Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T18:29:29.675Z Has data issue: false hasContentIssue false

Roles of Surface Termination in Photoluminescence Mechanisms of Porous Si

Published online by Cambridge University Press:  15 February 2011

Y. Suda
Affiliation:
Faculty of Technology, Tokyo University of Agriculture and Technology, 2–24–16 Naka-cho, Koganei, Tokyo 184, Japan, [email protected]
K. Obata
Affiliation:
Faculty of Technology, Tokyo University of Agriculture and Technology, 2–24–16 Naka-cho, Koganei, Tokyo 184, Japan, [email protected]
A. Kumagai
Affiliation:
Faculty of Technology, Tokyo University of Agriculture and Technology, 2–24–16 Naka-cho, Koganei, Tokyo 184, Japan, [email protected]
N. Koshida
Affiliation:
Faculty of Technology, Tokyo University of Agriculture and Technology, 2–24–16 Naka-cho, Koganei, Tokyo 184, Japan, [email protected]
Get access

Abstract

The relationship between the oxidation states and PL properties and the effects of H/O termination exchange on the PL properties of PS have been investigated using synchrotron radiation photoemission spectroscopy (SR-PES), Auger electron spectroscopy (AES), Fourier transform infrared (FTIR), and photoluminescence (PL) techniques. The energy band gap, the peak energy and FWHM of the PL spectrum are almost unchanged by the oxidation process and by the H/O termination exchange. After the oxidation, the PL peak intensity decreased, suggesting the creation of nonradiative centers. In the H/O termination exchange experiment, the PL peak intensity decreased by more than 65% upon annealing. However, it recovered the initial PL intensity by oxygen exposure. These results suggest that the surface termination itself functions to eliminate the nonradiative centers without depending on the termination species of hydrogen or oxygen, and that the skeletal structure of PS crystallites is important in the PL mechanisms.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Suda, Y., Ban, T., Koizumi, T., Koyama, H., Tezuka, Y., Shin, S. and Koshida, N., Jpn. J. Appl. Phys. 33, 581 (1994).Google Scholar
2.Suda, Y. and Koshida, N., Denki Kagaku 63, 892 (1995) [in Japanese].Google Scholar
3.Suda, Y., Koizumi, T., Obata, K., Tezuka, Y., Shin, S. and Koshida, N., J. Electrochem. Soc. 143, 2502 (1996).Google Scholar
4.Koizumi, T., Obata, K., Tezuka, Y., Shin, S., Koshida, N. and Suda, Y., Jpn. J. Appl. Phys. 35, L803 (1996).Google Scholar
5.Ban, T., Koizumi, T., Haba, S., Koshida, N. and Suda, Y., Jpn. J. Appl. Phys. 33, 5603 (1994).Google Scholar
6.Tischler, M.A., Collins, R.T., Stathis, J.H. and Tsang, J.C., Appl. Phys. Lett. 60, 639 (1992).Google Scholar
7.Tsai, C., Li, K.-H., Sarathy, J., Shih, S., Campbell, J.C., Hance, B.K. and White, J.M., Appl. Phys. Lett. 59, 2814 (1991).Google Scholar
8.Bustarret, E., Ligeon, M. and Ortega, L., Solid State Commun. 83, 461 (1992).Google Scholar
9.Brandt, M.S., Fuchs, H.D., Stutzmann, M., Weber, J. and Cardona, M., Solid State Commun. 81, 307 (1992).Google Scholar
10.Canham, L.T., Phys. World 5, 41 (1992).Google Scholar
11.Clausing, P., Z. Physics. 60, 471 (1930).Google Scholar
12.Niwano, M., Katakura, H., Takakuwa, Y. and Miyamoto, N., J. Appl. Phys. 68, 5576 (1990).Google Scholar
13.Himpsel, F.J., McFeely, F.R., Taleb-Ibrahimi, A., Yarmoff, J.A. and Hollinger, G., Phys. Rev. B38, 6084 (1988).Google Scholar
14.Ley, L., Reichardt, J. and Johnson, R.L., Phys. Rev. Lett. 49, 1664 (1982).Google Scholar
15.Koshida, N., Koyama, H., Suda, Y., Yamamoto, Y., Araki, M., Saito, T., Sato, K., Sata, N. and Shin, S., Appl. Phys. Lett. 63, 2774 (1993).Google Scholar
16.George, T., Anderson, M.S., Pike, W.T., Lin, T.L., Fathauer, R.W., Jung, K.H. and Kwong, D.L., Appl. Phys. Lett. 60, 2359 (1992).Google Scholar
17.Parkhutik, V.P., Albella, J.M., Martinez-Duart, J.M., Gómez-Rodríguez, J.M., Barò, A.M. and Shershulsky, V.I., Appl. Phys. Lett. 62, 366 (1993).Google Scholar
18.Delenie, C., Allan, G. and Lannoo, M., Phys. Rev. B48, 11024 (1993).Google Scholar
19.Gupta, P., Colvin, V.L. and George, S.M., Phys. Rev. B37, 8234 (1988).Google Scholar
20.Matsumoto, T., Masumoto, Y., Nakashima, S., Mimura, H. and Koshida, N., in Ext. Abs. '96 Int. Conf. on Solid State Devices and Materials (Japan Soc. Appl. Phys., Tokyo, 1996) pp. 709711.Google Scholar
21.Wang, L. -W. and Zunger, A., J. Phys. Chem. 98, 2158 (1994).Google Scholar
22.Yeh, C. -Y., Zhang, S.B. and Zunger, A., Phys. Rev. B50, 14405 (1994).Google Scholar
23.Petrova-Koch, V., Muschik, T., Kux, A., Meyer, B.K., Koch, F. and Lehmann, V., Appl. Phys. Lett. 61, 943 (1992).Google Scholar
24.Shih, S., Tsai, C., Li, J.-C., Jung, K.H., Campbell, J.C. and Kwong, D.L., Appl. Phys. Lett. 60, 633 (1992).Google Scholar