Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-09T09:04:36.977Z Has data issue: false hasContentIssue false

The Roles of Stress, Geometry and Orientation on Misfit Dislocations Kinetics and Energetics in Epitaxial Strained Layers.

Published online by Cambridge University Press:  22 February 2011

R. Hull
Affiliation:
AT&T Bell Laboratories 600 Mountain Avenue Murray Hill, NJ 07974
J. C. Bean
Affiliation:
AT&T Bell Laboratories 600 Mountain Avenue Murray Hill, NJ 07974
F. Ross
Affiliation:
AT&T Bell Laboratories 600 Mountain Avenue Murray Hill, NJ 07974
D. Bahnck
Affiliation:
AT&T Bell Laboratories 600 Mountain Avenue Murray Hill, NJ 07974
L. J. Pencolas
Affiliation:
AT&T Bell Laboratories 600 Mountain Avenue Murray Hill, NJ 07974
Get access

Abstract

The geometries, microstructures, energetics and kinetics of misfit dislocations as functions of surface orientation and the magnitude of strain/stress are investigated experimentally and theoretically. Examples are drawn from (100), (110) and (111) surfaces and from the GexSi1–x/Si and InxGa1–x/GaAs systems. It is shown that the misfit dislocation geometries and microstructures at lattice mismatch stresses < - 1GPa may in general be predicted by operation of the minimum magnitude Burgers vector slipping on the widest spaced planes. At stresses of the order several GPa, however, new dislocation systems may become operative with either modified Burgers vectors or slip systems. Dissociation of totál misfit dislocations into partial dislocations is found to play a crucial role in strain relaxation, on surfaces other than (100) under compressive stress.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Strained Layer Superlattices”, ed. Pearsall, T.P., Semiconductor and Semimetals Series Vols. 32 and 33 (Academic Press, Boston, 1990)Google Scholar
2. Frank, F.C. and van der Merwe, J.H., Proc. Roy. Soc. (1949) A198, 205; A198, 216; A200, 125Google Scholar
3. Van der Merwe, J.H. and Ball, C.A.B. (1975), in Epitaxial Growth, Part b, edited by Matthews, J.W. (Academic, New York), pp. 493528 Google Scholar
4. Matthews, J.W. and Blakeslee, A.E. (1974), J. CrysL Growth 27, 118; 32, 265Google Scholar
5. Matthews, J.W. (1975), J. Vac. Sci. Technol. 12, 126 and references contained thereinGoogle Scholar
6. Dodson, B.W. and Tsao, J.Y. (1987), Appl. Phys. Lett. 51, 1325 CrossRefGoogle Scholar
7. Fritz, I.J. (1987), Appl. Phys. Leu. 51, 1080 Google Scholar
8. Bean, J.C., Feldman, L.C., Fiory, A.T., Nakahara, S. and Robinson, I.K. (1984), J. Vac. Sci. Technol. A2, 436 Google Scholar
9. Kasper, E., Herzog, H.-J. and Kibbel, H. (1975), Appl. Phys. 8, 199 Google Scholar
10. Fritz, J., Picreaux, S.T., Dawson, L.R., Drummond, T.J., Laidig, W.D. and Anderson, N.G. (1985), Appl. Phys. Lett. 46, 967 Google Scholar
11. Hull, R., Bean, J.C., Bonar, J.M., Higashi, G.S., Short, K.T., Temkin, H. and White, A.E. (1990), Appl. Phys. Lett. 56, 2445.Google Scholar
12. Gourley, P.L., Fritz, I.J. and Dawson, L.R. (1988), Appl. Phys. Lett. 52 377 Google Scholar
13. Hull, R., Bean, J.C., Werder, D.J. and Leibenguth, R.E. (1989), Phys. Rev. B40, 1681 Google Scholar
14. Hull, R., Bean, J.C., and Buescher, C. (1989), J. Appl. Phys. 66, 5837 Google Scholar
15. Hull, R., Bean, J.C., Bahnck, D., Peticolas, L.J., Short, K.T. and Unterwald, F.C. (1991), J. Appl. Phys., 70, 2052 Google Scholar
16. Houghton, D.C. (1991), J. Appl. Phys. 70, 2136 Google Scholar
17. Tuppen, C.G. and Gibbings, C.J. (1990), J. Appl. Phys. 68, 1526 Google Scholar
18. Bonar, J.M., Hull, R., Malik, R. J., Ryan, R.W. and Walker, J.F. (1990), Proc. Mat. Res. Soc. 160, 117 CrossRefGoogle Scholar
19. Paine, D.C., Howard, D.J., Luo, D., Sacks, R.N. and Eschrich, T.C. (1990), Proc. Mat. Res. Soc. 160, 123 Google Scholar
20. Dixon, R.H. and Goodhew, P.J., J. Appl. Phys. 68, 3163 (1990)Google Scholar
21. Grabow, M.H. and Gilmer, G.H., Proc. mat Res. Soc. 94, 15 (1987)Google Scholar
22. Schmid, E., Z. Elektrochem. 37, 447 (1931)Google Scholar
23. Hirth, J.P. and Lothe, J. (1968), “Theory of Dislocations” (McGraw-Hill, New York)Google Scholar
24. Twigg, M.E., J. Appl. Phys. 68, 5109 (1990)Google Scholar
25. Alexander, H. and Haasen, P. (1968) in Solid State Physics, Vol. 22 Google Scholar
26. Imai, M. and Sumino, K. (1983), Phil. Mag. A47, 599 Google Scholar
27. Patel, J R and Chaudhuri, A R 1966, Phys. Rev. 143, 601 CrossRefGoogle Scholar
28. George, A. and Rabier, J. (1987), Revue. Phys. Appl. 22, 1941 Google Scholar
29. Kusters, K.H. and Alexander, H., Physica 116B, 594 (1983)Google Scholar
30. Dodson, B.W. (1988), Phys. Rev. B38, 12383 Google Scholar
31. Seeger, A. and Schiller, P. (1962), Acta. Metall. 10, 348 CrossRefGoogle Scholar
32. Hagen, W. and Strunk, H. (1978), Appl. Phys. 17, 85 Google Scholar
33. Grundmann, M., Lieneit, U., Bimberg, D., Fischer-Colbrie, A. and Miller, J.N., Appl. Phys. Lett. 55, 1765 (1989)Google Scholar
34. Houghton, D.C., Gibbings, C.J., Tuppen, C.G., Lyons, M.H. and Halliwell, M.A.G., Appl. Phys. Lett. 56, 460 (1990)Google Scholar
35. Gatan, , 780 Commonwealth Drive, Warrendale PA 10586, Model #628Google Scholar
36. Huil, R., Bean, J.C., Werder, D.J. and Leibenguth, R.E. (1988), Appl. Phys. Lea 52, 1605 Google Scholar
37. Hull, R. and Bean, J.C., Proc. Mat. Res. Soc. 160, 23 (1990)Google Scholar
38. Parker, M.A., Ph. D. Thesis, Stanford University, 1988 Google Scholar
39. Hull, R. and Bean, J.C. (1989), Proc. Mau Res. Soc. 148, p. 309 Google Scholar
40. Eaglesham, D J, Kvam, E P, Maher, D M, Humphreys, C J and Bean, J C 1989, Phil. Mag. A59, 1059 CrossRefGoogle Scholar
41. Matthews, J.W., Blakeslee, A.E. and Mader, S., Thin Solid Films 33, 253 (1976)Google Scholar
42. Fitzgerald, E.A., Watson, G.P., Proano, R.E., Ast, D.G., Kirchner, P.D., Pettit, G.D. and Woodall, J.M. (1989), J. Appl. Phys. 65, 2688 Google Scholar
43. Hull, R. and Bean, J.C. (1989), J. Vac. Sci. Tech. A7, 2580 Google Scholar
44. Bacon, D.J. and Crocker, A.G., Phil. Mag. 12, 195 (1965)Google Scholar
45. Dodson, B.W., Appl. Phys. Lett 53, 394 (1987)Google Scholar
46. Frank, F.C. and Read, W.T. in “Symposium on Plastic Deformation of Crystalline Solids”, Carnegie Institute of Technology, Pittsburgh, 1950, pg. 44 Google Scholar
47. LeGoues, F.K., Meyerson, B.S. and Morar, J.F., Phys. Rev. Lett. 66, 2903 (1991)Google Scholar
48. Lefebvre, A., Herbeaux, C., Boillet, C. and Di Persio, J., Phil. Mag. Lett. 63, 23 (1991)Google Scholar
49. Hull, R. and Bean, J.C. (1989), Appl. Phys. Lett. 54, 925 Google Scholar
50. Freund, L.B. (1990), J. Appl. Phys. 68, 2073 Google Scholar
51. Mitchell, T.E. and Unal, O., J. Elec. Mat. 10, 723 (1991)Google Scholar
52. Hull, R., Bean, J.C., Bonar, J.M. and Peticolas, L.J. (1991). to be published in Proc. of Int. Conf. on Microscopy of Semiconducting Materials, Oxford, England, March 1991.Google Scholar
53. Hull, R., Bean, J.C., Peticolas, L.J., Xie, Y.H. and Hsieh, Y.F. (1991), Proc. Mat. Res. Soc. 220, 153 Google Scholar
54. Hull, R., Bean, J.C., Peticolas, L. and Bahnck, D., Appl. Phys. Lett. 59, 964 (1991)Google Scholar
55. Thompson, N. (1953), Proc. Phys. Soc. 66B, 481 Google Scholar
56. Maree, P.M.J., Barbour, J.C., van der Veen, J.F., Kavanagh, K.L., Bulle-Liuewma, C.W.T. and Viegers, M.A.P., J. Appl. Phys. 62, 4413 (1987)Google Scholar
57. Wegscheider, W., Eberl, K., Menczigar, U. and Abstreiter, G., Appl. Phys. Lett. 57, 875 (1990)Google Scholar
58. Hwang, D.M., Bhat, R., Schwarz, S.A. and Chen, C.Y., Phys. Rev. Lett. 66, 739 (1991)Google Scholar
59. Bonar, J.M., Hull, R., Walker, J.F. and Malik, R., Appl. Phys. Lett., in pressGoogle Scholar
60. Le Hazif, R. and Poirier, J.P., Acta. Met. 23, 865 (1975)Google Scholar
61. Pichaud, R., Burle, M. and Minari, F., Phil. Mag. A 44, 689 (1981)CrossRefGoogle Scholar
62. Nix, W.A., Noble, D.B. and Turlo, J.F. (1990), Proc. Mat Res. Soc. 188, 315; also D. Noble, unpublished dataGoogle Scholar