Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T17:54:11.473Z Has data issue: false hasContentIssue false

The Role of Trapped Interstitials During Rapid Thermal Annealing

Published online by Cambridge University Press:  26 February 2011

S. J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
R. J. Culbertson
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

During the rapid thermal annealing of ion implanted layers, trapped interstitials are responsible for transient enhanced dopant diffusion and the formation of a band of defects at the mean projected ion range. We describe the detailed nature and extent of these effects and show how they can be predicted in practice. We present a model which explains why trapping only occurs with group V implantation and describe double implantation experiments which confirm the model and show how the formation of projected range defects can be suppressed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Sedgwick, T. O., J. Electrochem. Soc. 130, 484 (1983).Google Scholar
[2] Lasky, J. B., J. Appl. Phys. 54, 6009 (1983).Google Scholar
[3] Narayan, J. and Holland, O. W., J. Appl. Phys. 56, 2913 (1984).Google Scholar
[4] Seidel, T. E., p. 7 in Ion Beam Processes in Adanced Electronic Materials and Device Technology, ed. by. Appleton, B. R., Eisen, F. H., and Sigmon, T. W., Vol. 45, Proc. Mat. Res. Soc. (1985).Google Scholar
[5] Pennycook, S. J., Narayan, J., and Holland, O. W., J. Electrochem. Soc. 132, 1962 (1985).Google Scholar
[6] Narayan, J., Holland, O. W., and Appleton, B. R., J. Vac. Sci. Technol. B1, 871 (1983).Google Scholar
[7] Pennycook, S. J., Culbertson, R. J., and Narayan, J., J. Mater. Res. (in press).Google Scholar
[8] Fair, R. B., p. 315 in Impurity Doping Processes in Silicon, ed. By Wang, F. F. Y., North-Holland, NY (1981).Google Scholar
[9] Tan, T. Y., Goesele, U., and Morehead, F. F., Appl. Phys. A31, 97 (1983).Google Scholar
[10] Lietoila, A., Gibbons, J. F., and Sigmon, T. W., Appl. Phys.Lett. 36, 765 (1980).Google Scholar
[11] Morehead, F. F. and Hodgson, R. T., p. 341 in Energy Beam-Solid Interactions and Transient Thermal Processing, ed. by Biegelsen, D. K., Rozgonyi, G. A., and Shank, C. V., Vol. 35, Proc. Mat. Res. Soc. (1985).Google Scholar
[12] Culbertson, R. J. and Pennycook, S. J., Nucl. Instrum. Meth. (in press).Google Scholar
[13] Pennycook, S. J., Narayan, J., and Culbertson, R. J., p. 151 in Impurity Diffusion and Gettering in Silicon, ed. by Fair, R. B., Pearce, C. W., and Washburn, J., Vol. 36, Proc. Mat. Res. Soc. (1985).Google Scholar
[14] Michel, A. E., these proceedings.Google Scholar
[15] Tan, S. I., Berry, B. S., and Frank, W., p. 19 in Ion Implantation in Semiconductors and Other Materials, ed. by Crowder, B. L, Plenum Press, NY (1973).Google Scholar
[16] Frank, W., Rad. Effects 21, 119 (1974).CrossRefGoogle Scholar
[17] Hirata, M., Hirata, M., -Saito, K., and Crawford, J. H. Jr., J. Appl. Phys. 38, 2433 (1967).Google Scholar
[18].E Blount, I., J. Appl. Phys. 30, 1218 (1959).Google Scholar
[19] Frank, W., Seeger, A., and GfoGsele, U., p. 31 in Defects in Semiconductors, ed. by Narayan, J. and Tan, T. Y., North-Holland, NY (1981).Google Scholar