Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T15:53:54.637Z Has data issue: false hasContentIssue false

The role of the interfaces in the optical effects of large-sized SiCxO1-xN nanocrystallites

Published online by Cambridge University Press:  15 March 2011

K.J. Plucinski
Affiliation:
Military University of Technology, Dept of Electronics, Warsaw, POLAND
H. Kaddouri
Affiliation:
Universite du Perpignan, Lab. LP2A, Perpignan, FRANCE
I.V. Kityk
Affiliation:
Institute of Physics WSP, Częstochowa, POLAND
Get access

Abstract

The band energy structure of large-sized (10-25) nm nanocrystallites (NC) of SiCxO1-xN (0.96<x<1.06) was investigated using different band energy approaches, as well as modified Car Parinello molecular dynamics simulations of interfaces. A thin carbon sheet (of about 1 nm) appears, covering the crystallites. This sheet leads to substantial reconstruction of the near-the-interface SiCxO1-xN crystalline layers. Numerical modeling shows that these NC may be treated as quantum dot-like SiCxO1-xN reconstructed crystalline surfaces, covering the appropriate crystallites. All band energy calculation approaches (semi-empirical pseudopotential, fully augmented plane waves and norm-conserving self-consistent pseudopotential approaches) predicted the experimental spectroscopic data. In particular, it was shown that the near-the-surface carbon sheet plays a dominant role in the behavior of the reconstructed band energy structure. Independent evidence for the important role of the dot-like crystalline layers are the excitonic-like states, which are not dependent on the particular structure of the SiC, but are sensitive to the thickness of the carbon layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Microcrystalline and Nanocrystalline Semiconductors, edited by Collins, R. W., Tsai, C. C., Hiros, M., Koch, F., and Brus, L. E., MRS Symposium Proceedings No. 358, MaterialsResearch Society, Boston, 1994.Google Scholar
2. Light Emission from Novel Silicon Materials, edited by Kane-mitsu, Y., Kondo, M., and Takeda, K., The Physical Society of Japan, Tokyo, 1994.Google Scholar
3. Wang, L. W. and Zunger, A., in Nanocrystalline Semiconductor Materials, edited by Kamat, P. V. and Meisel, D., Elsevier Science, Amsterdam, (1996); A. D. Yoffe, Adv. Phys. 42, 173 (1993); K.D. Hirschman, L. Tsybeskov, S.P. Duttagupta, P.M. Fauchet, Nature (London) 384 (1996) 338; M.C. Schlamp, X. Peng, and A.P. Alivisatos, J.Appl.Phys. 82 (1997) 5837.Google Scholar
4. Buda, F., Kohanoff, J., and Parrinello, M., Phys. Rev. Lett. 69, 1272 (1992).Google Scholar
5. Park, Y.S., SiC Materials and Devices, Semiconductors and Semimetals, Academic Press, London, UK, 1998; M.B. Yu, S.F. Rusli, S.F. Yoon, S.J. Xu, K. Chew, J. Cui, J. Ahn, and Q. Zhang, Thin Solid Films 177, 377-378 (2000).Google Scholar
6. Kityk, I.V., Makowska-Janusik, M., Kassiba, A., and Plucinski, K., Optical Materials 13, 449 (2000).Google Scholar
7. Stroscio, J.A. and Eigler, D.M., Science 254, 1319 (1991).Google Scholar
8. Derycke, V., Phys. Rev. Lett. 81, 5868 (1998).Google Scholar
9. Bermudez, V.M., Phys. Stat. Solidi B202, 447 (1997).Google Scholar
10. Gavrilenko, V.I., Frolov, S.I., and Klyui, N.I., Physica B185, 394 (1993).Google Scholar
11. Albercht, S., Reining, L., R.Del Sole, and Onida, G., Phys. Rev. B37, 7486 (1999).Google Scholar
12. Galli, G., Martin, R.M., Car, R., and Parinello, M., Phys. Rev. B42, 7470 (1990).Google Scholar
13. Bylander, B.M., and Kleinman, L., Phys. Rev. B41, 7868 (1990).Google Scholar
14. Glans, P.-A. and Johansson, L.I., Surf. Sci. 465, L759 (2000); P.-A. Glans, T. Balasubramanian, M. Syvajori, B. Yakimava, L.I. Johansson, Surf. Science 470, 284 (2001).Google Scholar
15. Troullier, N., and Martins, J.L., Phys. Rev. B43, 8861 (1991).Google Scholar
16. Persson, C. and Lindefelt, U., J.Appl.Phys. 82, 5496 (1997).Google Scholar