Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T12:01:41.080Z Has data issue: false hasContentIssue false

The Role of Texture On The Reliability Of Aluminum Based Interconnects

Published online by Cambridge University Press:  21 February 2011

David B. Knorr*
Affiliation:
Materials Engineering Department and Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, New York 12180-3590
Get access

Abstract

Preferred crystallographic orientation has long been recognized to play an important role in interconnect reliability where a strong (111) texture improves electromigration lifetime. Detailed microstructural analyses have enabled the role of texture to be better understood. Although Bragg-Brentano scans are often used to characterize texture, it is shown that this technique gives incomplete and sometimes misleading information. The pole figure technique provides a complete description of the texture. The measurement and presentation of textures consider experimental aspects unique to thin film analysis as a prerequisite to developing quality data. Five textural archetypes are identified, and metrics presented for their quantification. Processing effects on texture are complex and depend on all facets of deposition conditions, on substrate/underlayers, and on annealing. General trends and specific examples of the impact of each aspect are given where it will be shown that deposition conditions and the presence of underlayers have the greatest influence. The role of texture on reliability is considered for four failure modes: thermal hillocks, grain collapse, stress voiding, and electromigration. Electromigration results are emphasized where texture must be considered in the context of grain structure, in general, and, more specifically, the ratio of line width to grain size. Most measures of microstructure and reliability are statistical. The importance of local microstructural analysis will be emphasized in terms of both the arrangement of grains relative to the line dimension and microtexture characterization of the grain-to-grain misorientations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Directional Properties of Materials, edited by Bunge, H.J. (DGM Informationsgesellschaft, Oberursel, Germany, 1988).Google Scholar
2. Attardo, M.J. and Rosenberg, R., J Appl. Phys., 41, 2381 (1970).CrossRefGoogle Scholar
3. Vaidya, S. and Sinha, A.K., Thin Solid Films, 75, 253 (1981).CrossRefGoogle Scholar
4. Matthies, S.. Vinel, G.W., and Helming, K., Standard Distributions in Texture Analysis, Vol. 1 (Akademie-Verlag, Berlin, 1987), p. 15.Google Scholar
5. Knorr, D.B., Bai, P., and Lu, T.-M., Appl. Phys. Lett., 56, 1858 (1991).Google Scholar
6. Powder Diffraction File (JCPDS-Inter. Centre for Diffraction Data, Swarthmore, PA).Google Scholar
7. Bunge, H.J. and Puch, K.-H., Z. Metalike., 75, 124 (1984).Google Scholar
8. Bunge, H., in Quantitative Texture Analysis, edited by Bunge, H.J. and Esling, C. (Deutsche Geselischaft fur Metallkunde, Oberursel, Germany, 1982), p. 85.Google Scholar
9. Schultz, L.G., J. Appl. Phys., 20, 1030 (1949).CrossRefGoogle Scholar
10. Standard Methodfor Preparing Quantitative Pole Figures of Metals, ASTM Standard E81-63 (American Society for Testing and Materials, Philadelphia, PA, 1974).Google Scholar
11. Chernock, W.P. and Beck, P.A., J. Appl. Phys., 23, 341 (1952).CrossRefGoogle Scholar
12. Phillips, F.C., The Use of Stereographic Projections in Structural Geology, 3rd. ed., (Edward Arnold, New York, 1971), p. 60.Google Scholar
13. Knorr, D.B. and Lu, T.-M., Appl. Phys. Lett., 54, 2210 (1989).CrossRefGoogle Scholar
14. Bunge, H.J., Texture Analysis in Materials Science (Butterworths, London, 1982).Google Scholar
15. Quantitative Texture Analysis, edited by Bunge, H.J. and Esling, C. (Deutsche Gesellschaft fur Metallkunde, Oberursel, Germany, 1982).Google Scholar
16. Preferred Orientation in Deformed Metals and Rocks: An Introduction to Modern Texture Analysis, edited by Wenk, H.R. Academic Press, NY, 1985).Google Scholar
17. Bunge, H.J., Inter. Mater. Rev., 32, 265 (1987).CrossRefGoogle Scholar
18. Bunge, H.J., in Advances and Applications of Quantitative Texture Analysis, edited by Bunge, H.J. and Esling, C. (DGM Informationsgesellschaft, Oberursel, Germany, 1991), p. 19.Google Scholar
19. Randle, V., Ralph, B., and Dingley, D.J., Acta Metall., 36, 267 (1988).CrossRefGoogle Scholar
20. Dingley, D.J., Scanning Electron Microscopy, 1984, 569.Google Scholar
21. Schwarzer, R.A., in Advances and Applications of Quantitative Texture Analysis, edited by Bunge, H.J. and Esling, C. (DGM Informationsgesellschaft, Oberursel, Germany, 1991) p. 51.Google Scholar
22. Schwarzer, R.A., Textures and Microstructures, 13, 15 (1990).CrossRefGoogle Scholar
23. Jang, H., Farkas, D., and Hosson, J.T.M. De, J. Mater. Res., 7, 1707 (1992).CrossRefGoogle Scholar
24. Schmidt, N.-H., Bilde-Sorensen, J.B., and Jensen, D. Juul, Scanning Microscopy, 5, 637 (1991).Google Scholar
25. Wright, S.I. and Adams, B.L., Met. Trans. A, 23A, 759 (1992).CrossRefGoogle Scholar
26. Adams, B.L. and Field, D.P., Met. Trans. A, 23A, 2501 (1992).CrossRefGoogle Scholar
27. Pospiech, J., Sztwiertnia, K., and Haessner, F., Textures and Microstructures, 6, 201 (1986)CrossRefGoogle Scholar
28. Adams, B.L., Met. Trans. A, 17A, 2199 (1986).CrossRefGoogle Scholar
29. Bai, P., Yang, G.R., You, L., Lu, T.-M., and Knorr, D.B., J. Mater. Res., 5, 989 (1990).CrossRefGoogle Scholar
30. Knorr, D.B. and Lu, T.-M., Textures and Microstructures, 13, 155 (1991).CrossRefGoogle Scholar
31. Wassermann, G. and Grewen, J., Texturen metallisher Wertstoffe (Springer-Verlag, Berlin, 1962), p. 5.CrossRefGoogle Scholar
32. Knorr, D.B. and Rodbell, K.P., in Submicron Metallization: The Challenges, Opportunities, and Limitations (SPIE, Redmond, WA, 1993), in press.Google Scholar
33. Nagasawa, E. and Okabayashi, H., in Proceedings of the 17th Reliability Physics Symposium, (IEEE, New York, 1979), p. 64.Google Scholar
34. Knorr, D.B., Tracy, D.P., and Rodbell, K.P., Appl. Phys. Lett., 59, 3241 (1991).CrossRefGoogle Scholar
35. Kallend, J.S., Kocks, U.F., Rollett, A.D., and Wenk, H.-R., Mater. Sci. Engr., A132, 1 (1991).Google Scholar
36. Rodbell, K.P., Knorr, D.B., and Tracy, D.P., in Materials Reliability Issues in Microelectronics II, edited by Thompson, C.V. and Lloyd, J.R. (Mater. Res. Soc. Proc. 265, Pittsburgh, PA, 1992) pp. 107112.Google Scholar
37. Witt, F., Vook, R.W., and Schwartz, M., Bull. Am. Phys. Soc., 10, 453 (1965).Google Scholar
38. Tracy, D.P. and Knorr, D.B., J. Elect. Mater., 22 (June 1993), in press.CrossRefGoogle Scholar
39. Rodbell, K.P., Knorr, D.B., and Mis, J.D., J. Elect. Mater., 22 (June 1993), in press.CrossRefGoogle Scholar
40. Fu, K.-Y., Kawasaki, H., Olowolafe, J.O., and Pyle, R.E., in Submicron Metallization: The Challenges, Opportunities, and Limitations (SPIE, Redmond, WA, 1993), in press.Google Scholar
41. Hinode, K. and Homma, Y., in Proceedings of the 28th Reliability Physics Symposium, (IEEE, New York, 1990), p. 25.Google Scholar
42. Knorr, D.B., unpublished research, 1993.Google Scholar
43. Knorr, D.B., Tracy, D.P., and Lu, T.-M., in Evolution of Thin Film and Surface Microstructures, edited by Thompson, C.V., Tsao, J.Y., and Srolovitz, D.J. (Mater. Res. Soc. Proc. 202, Pittsburgh, PA, 1991) pp. 199204.Google Scholar
44. Knorr, D.B., Rodbell, K.P., and Tracy, D.P., in Materials Reliability Issues in Microelectronics, edited by Lloyd, J.R., Yost, F.G., and Ho, P.S. (Mater. Res. Soc. Proc. 225, Pittsburgh, PA, 1991) pp. 2126.Google Scholar
45. Knorr, D.B., Tracy, D.P., and Lu, T.-M., Textures and Microstructures, 14–18, 543 (1991).CrossRefGoogle Scholar
46. Flinn, P.A., Gardiner, D.S., and Nix, W.D., IEEE Transactions on Electron Devices, ED–34, 689 (1987).CrossRefGoogle Scholar
47. Gardiner, D.S. and Flinn, P.A., J. Appl. Phys., 67, 1831 (1990).CrossRefGoogle Scholar
48. Kristensen, N., Ericson, F., Schweitz, J.-A., and Smith, U., J. Appl. Phys., 69, 2097 (1991).CrossRefGoogle Scholar
49. Kristensen, N., Ericson, F., Schweitz, J.-A., and Smith, U., Thin Solid Films, 197, 67 (1991).CrossRefGoogle Scholar
50. Sanchez, J.E. Jr., and Arzt, E., Scripta Metall. et Mater., 27, 285 (1992).CrossRefGoogle Scholar
51. Thompson, C.V., J. Mater. Res., (1993), in press.Google Scholar
52. Yamada, L., Inokawa, H., and Takagi, T., J. Appl. Phys., 56, 2746 (1984).CrossRefGoogle Scholar
53. Minkiewicz, V.J., Moore, J.O., and Eldridge, J.M., J. Electrochem. Soc., 139, 271 (1992).CrossRefGoogle Scholar
54. Bacconnier, B., Lormand, G., Papapietro, M., Achard, M., and Papon, A.-M., J. Appl. Phys., 64, 6483 (1988).CrossRefGoogle Scholar
55. Gerth, D. and Schwarzer, R.A., Materials Science Forum, 113–115, 625 (1992).Google Scholar
56. Schwarzer, R.A. and Gerth, D., J. Elect. Mater., (June 1993), in press.Google Scholar
57. Kaneko, H., Hasunuma, M., Sawabe, A., Kawanoue, T., Kohanawa, Y., Komatsu, S., and Miyauchi, M., in Proceedings of the 28th Reliability Physics Symposium, (IEEE, New York, 1990), p. 194.Google Scholar
58. Ogawa, S. and Inoue, M., in Stress-Induced Phenomena in Metallization, edited by Li, C.-Y., Totta, P., and Ho, P. (Am. Instit. Phys. Conf. Proc. 263, New York, 1992), p. 21.Google Scholar
59. Campbell, A.N., Mikawa, R.E., and Knorr, D.B., J. Elect. Mater., 22 (June 1993), in press.CrossRefGoogle Scholar
60. Thompson, C.V. and Kahn, H., J. Elect. Mater., 22 (June 1993), in press.CrossRefGoogle Scholar
61. Cho, J. and Thompson, C.V., J. Elect. Mater., 19, 1207 (1990).CrossRefGoogle Scholar
62. Li, P., Yapsir, A.S., Rajan, K., and Lu, T.-M., Appl. Phys. Lett., 54, 2443 (1989).CrossRefGoogle Scholar
63. Knorr, D.B. and Rodbell, K.P., in Materials Reliability Issues in Microelectronics II, edited by Thompson, C.V. and Lloyd, J.R. (Mater. Res. Soc. Proc. 265, Pittsburgh, PA, 1992) pp. 113118.Google Scholar