Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-06T06:16:36.119Z Has data issue: false hasContentIssue false

The Role of Surface Stress in the Faceting of Stepped Si(111) Surfaces

Published online by Cambridge University Press:  25 February 2011

Ellen D. Williams
Affiliation:
Department of Physics, University of Maryland, College Park, MD 20742
R. J. Phaneuf
Affiliation:
Department of Physics, University of Maryland, College Park, MD 20742
N. C. Bartelt
Affiliation:
Department of Physics, University of Maryland, College Park, MD 20742
W. Świe¸ch
Affiliation:
Physikalisches Institut, Technische Universität Clausthal, Germany
E. Bauer
Affiliation:
Physikalisches Institut, Technische Universität Clausthal, Germany
Get access

Abstract

The nucleation and growth of facets on stepped Si(111) have been observed in real time using the newly developed technique of low-energy electron microscopy (LEEM). The results show that the growth of an isolated facet spontaneously stops at a well-defined size. This is a surprise as classical theories of the growth of linear facets predict a continuous growth, which would only be limited by collisions with neighboring facets. We review predictions that elastic interactions between surface regions of different structure can stabilize finite size domains and facets. We show that a model in which elastic relaxations caused by the facet boundaries stabilize a finite facet width is entirely consistent with the experimental observations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. van der Merwe, J.H., Phil. Mag. A 45, 127 (1982).Google Scholar
2. Blakely, J.M. and Schwoebel, R.L., Surf. Sci. 26, 321 (1971).Google Scholar
3. Marchenko, V.I., Sov. Phys. JETP 54, 605 (1981). Note Marchenko determines the lowest energy size of facets on a surface completely covered by facets: this size will in general be different from the size of an isolated facet at the onset of faceting given in the text.Google Scholar
4. Alerhand, O.L., Vanderbilt, D., Meade, R.D., and Joannopoulos, J.D., Phys. Rev. Lett. 61, 1973 (1988).Google Scholar
5. Vanderbilt, D., preprint (1991).Google Scholar
6. Falta, J., Imbihl, R., and Henzler, M., Phys. Rev. Lett. 64, 1409 (1990).Google Scholar
7. Nötzel, R., Ledentsov, N.N., Däweritz, L., Hohenstein, M., and Ploog, K., Phys. Rev. Lett. 67, 3812 (1991).CrossRefGoogle Scholar
8. Kern, K., Niehus, H., Schatz, A., Zeppenfeld, P., Goerge, J., and Comsa, G., Phys. Rev. Lett. 67, 855 (1991).Google Scholar
9. Herring, C., Phys. Rev. 82, 87 (1951).Google Scholar
10. Williams, E.D. and Bartelt, N.C., Science 251, 393 (1991).CrossRefGoogle Scholar
11. Phaneuf, R.J., Williams, E.D., and Bartelt, N.C., Phys. Rev. B, 39, 1984 (1988).Google Scholar
12. Wei, J., Wang, X.-S., Bartelt, N.C., Williams, E.D., and Tung, R.T., J. Chem. Phys. 94, 8384 (1991).Google Scholar
13. Noh, D.Y., Blum, K.I., Ramstad, M.J., and Birgeneau, R.J., Phys. Rev. B 44, 10969 (1991).Google Scholar
14. Bartelt, N.C., Williams, E.D., Phaneuf, R.J., Yang, Y., Das Sarma, S., J. Vac. Sci. Technol. A 7, 1898 (1989).Google Scholar
15. Métois, J.E. and Heyraud, J.E., Ultramicroscopy 31, 73 (1989);Google Scholar
Nozières, P., J. Phys. 50, 2541 (1989);CrossRefGoogle Scholar
Bilalbegovic, G., Ercolessi, F., Tosatti, E., Surf. Sci. Lett. 258, L676 (1991).Google Scholar
16. Swartzentruber, B.S., Mo, Y.-W., Webb, M.B., Lagally, M.G., J. Vac. Sci. Technol. A 7, 2901 (1989).Google Scholar
17. Gomez, R., Ph.D. thesis, University of Maryland, 1990 (unpublished).Google Scholar
18. Ishikawa, Y., Ikeda, N., Kenmochi, M., and Ichinokawa, T., Surf. Sci. 159, 256 (1985).Google Scholar
19. Mullins, W.W., Phil. Mag. 6, 1313 (1961)Google Scholar
20. Bauer, E. and Telieps, W., Sc. Mier. Suppl. 1, 99 (1987).Google Scholar
21. Veneklasen, L.H., Ultramicroscopy 36, 76 1991.Google Scholar
22. Phaneuf, R.J., Bartelt, N.C., Williams, E.D., Świe¸ch, W., and Bauer, E., Phys. Rev. Lett. 67, 2986 (1991).Google Scholar
23. Chmelík, J., Veneklasen, L.H., and Marx, G., Optik, 83, 155 (1989).Google Scholar
24. Phaneuf, R.J., Bartelt, N.C., Świe¸ch, W., Williams, E. D. and Bauer, E. (in preparation, 1991).Google Scholar
25. Herring, C., in Structure and Properties of Solid Surfaces, edited by Gomer, R. and Smith, C.S. (University of Chicago Press, 1952) p. 5.Google Scholar
26. More precisely, if ƒ 1×1(s,T) is the free energy per unit area (projected onto the (111) plane) of the unreconstructed stepped surface as a function of surface slope s, and ƒ 7×7(T) is the free energy per unit area of the reconstructed surface, then Google Scholar
27. Martinez, R.E., Augustyniak, W.M., and Golovchenko, J., Phys. Rev. Lett. 64, 1035 (1990).Google Scholar
28. Vanderbilt, D., Phys. Rev. Lett. 59, 1456 (1990).Google Scholar