Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T01:42:33.975Z Has data issue: false hasContentIssue false

Role of Oxygen Adatoms in Homoepitaxial Growth of Cu(001)

Published online by Cambridge University Press:  10 February 2011

Masanori Yata
Affiliation:
National Research Institute for Metals, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
Herve Rouch
Affiliation:
National Research Institute for Metals, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
Keikichi Nakamura
Affiliation:
Department of Physics, Zhejiang University, Hangzhou, People's Republic of, China
Get access

Abstract

O atoms segregate to the surface during Cu homoepitaxial growth on Cu(001)-(2√2×√2)-O to retain the (2√2×√2) surface. The presence of an O adlayer on the Cu surface raises the barrier height for the surface diffusion of the Cu adatom and increases the transition temperature of the growth mode from step flow to layer by layer. The growth proceeds by site exchange between Cu adatoms and O atoms. The site-exchange rate competes with the Cu deposition rate. There exists a critical Cu deposition rate above which the O atoms can not exchange the sites with Cu adatoms. The critical Cu deposition rate obeys an Arrhenius relation and the active energy for the site-exchange is estimated at 0.66 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Copel, M., Reuter, M.C., Kaxiras, E. and Tromp, R.M., Phys. Rev. Lett. 63, 632(1989).Google Scholar
2. Egetlhoff, W.F. Jr., and Steigerwald, D.A., J. Vac. Sci. Technol. A7, 2167(1989).Google Scholar
3. Iwanari, S. and Takayanagi, K., Jpn. J. Appl. Phys. Lett. 30, L1978(1991).Google Scholar
4. Hoegen, M. Horn-von, LeGoues, F.K., Copel, M., Reuter, M.C. and Tromp, R.M., Phys. Rev. Lett. 67, 1130(1991).Google Scholar
5. Wolter, H., Schmidt, M. and Wandelt, K., Surf. Sci. 298, 173(1993).Google Scholar
6. Schmidt, M., Wolter, H. and Wandelt, K., Surf. Sci. 307–309, 507(1994).Google Scholar
7. Schmidt, M., Wolter, H., Nohlen, M. and Wandelt, K., J. Vac. Sci. Technol. A12, 1818(1994).Google Scholar
8. Yata, M., Rouch, H. and Nakamura, K., Phys. Rev. B 56, 10579(1997).Google Scholar
9. Zeng, H.C., McFarlane, R.A. and Mitchell, K.A.R., Surf. Sci. Lett. 208, L7(1989); H.C. Zeng and K.A.R. Mitchell, ibid., 239, L571(1990).Google Scholar
10. Wuttig, M., Francy, R. and Ibach, H., Surf. Sci. 213, 103(1989); Surf. Sci. Lett. 224, L979(1989).Google Scholar
11. Robinson, I.K., Vlieg, E. and Ferrer, S., Phys. Rev. B 42, 6954(1990).Google Scholar
12. Jensen, F., Besenbacher, F., Lægsgaard, E. and Stensgaard, I., Phys. Rev. B 42, 9206 (1990).Google Scholar
13. Lederer, T. and Arvanitis, D., Phys. Rev. B 48, 15390(1993).Google Scholar
14. Leibsle, F.M., Surf. Sci. 337, p. 51(1995).Google Scholar
15. Burton, W., Cabrera, N. and Frank, F.C., Philos. Trans. R. Soc. London A243, 299(1951).Google Scholar
16. Miguel, J.J. De, Sánchez, A., Cebollada, A., Gallego, J.M., Ferrón, J. and Ferrer, S., Surf. Sci. 189/190, 1062(1987).Google Scholar
17. Breeman, M. and Boerma, D.O., Surf. Sci. 269/270, 224(1992).Google Scholar
18. Dürr, H., Wendelken, J.F. and Zuo, J.-K., Surf. Sci. Lett. 328, L527(1995).Google Scholar