Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-20T02:26:58.020Z Has data issue: false hasContentIssue false

Role of ion exchange in the corrosion of nuclear waste glasses

Published online by Cambridge University Press:  21 March 2011

M.I. Ojovan
Affiliation:
Immobilisation Science Laboratory, Department of Engineering Materials, University of Sheffield, United Kingdom
W.E. Lee
Affiliation:
Immobilisation Science Laboratory, Department of Engineering Materials, University of Sheffield, United Kingdom
R.J. Hand
Affiliation:
Immobilisation Science Laboratory, Department of Engineering Materials, University of Sheffield, United Kingdom
Get access

Abstract

The ion exchange phase of corrosion of nuclear waste glasses was modelled using Doremus' theory of interdiffusion and numerically analysed for British Magnox waste and Russian K-26 glasses. It is shown that even in non-silica -saturated conditions the ion exchange phase plays a significant role in the overall radionuclide release inventory particularly for short-lived radionuclides.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Silvestri, A., Molin, G., Salviulo, G.. J. Non-Cryst. Sol., 351, 13381349 (2005).Google Scholar
2. Ericson, J.E., Dersch, O., Rauch, F.. J. Archaeological Science, 31, 883902 (2004).Google Scholar
3. Ojovan, M.I., Hand, R.J., Ojovan, N.V., Lee, W.E.. J. Nucl. Mat. 340, 1224 (2005).Google Scholar
4. Ojovan, M.I., Pankov, A.S., Lee, W.E., Hand, R.J.. Proc. WM'05 Conference, Tucson, Arizona, 11p., 5114.pdf. (2005).Google Scholar
5. Appen, A.A.. Chemistry of glass. Khimiya, Leningrad, 1-352 (1970).Google Scholar
6. Boksay, Z., Bouquet, G., Dobos, S.. Phys. Chem. Glasses, 8, 140144 (1967).Google Scholar
7. Boksay, Z., Bouquet, G., Dobos, S.. Phys. Chem. Glasses, 9, 6971 (1968).Google Scholar
8. Doremus, R.H.. J. Non-Cryst. Solids, 48, 431436 (1982).Google Scholar
9. Agaard, P., Helgeson, H.C.. Am. J. Sci., 282, 237285 (1982).Google Scholar
10. Bacon, D.H., McGrail, B.P.. Mat. Res. Soc. Symp. Proc. 757, II1.9.16 (2003).Google Scholar
11. Abraitis, P.K., Livens, F.R., Monteith, J.E., Small, J.S., Triverdi, D.P., Vaughan, D.J., Wogelius, R.A.. Applied Geochemistry, 15, 13991416 (2000).Google Scholar
12. Ebert, W.L.. Phys. Chem. Glasses, 34 (2) 5865 (1993).Google Scholar
13. Ojovan, M.I., Lee, W.E., Hand, R.J., Ojovan, N.V.. Proc. XX Int. Congress on Glass, sr00700033DIS, Kyoto, Japan, 27.09-1.10.2004.Google Scholar
14. Smets, B.M.J., Tholen, M.G.W.. Phys. Chem. Glasses, 26, 6063 (1985).Google Scholar
15. Ojovan, M.I., Lee, W.E.. J. Nucl. Mat., 335, 425432 (2004).Google Scholar
16. Ivanov, I.A., Stefanovsky, S.V., Gulin, A.N.. Glass Phys. Chemistry, 19, 746755 (1993).Google Scholar
17. Aertsens, M., Lemmens, K., Iseghem, P. Van. Mat. Res. Soc. Proc., 757, II5.8.18 (2003).Google Scholar
18. Pankov, A., Ojovan, M.I., Lee, W.E., Scales, C.R.. Proc ICEM'05, ICEM05-1130 (2005).Google Scholar
19. Zoune-Thimm, A.. Doctoral dissertation. J.W. Goethe-Universitat. Frankfurt Main (1999).Google Scholar
20. Inagaki, Y., Idemitsu, K., Arima, T., Maeda, T., Ogawa, H., F. Itonaga. Mat. Res. Soc. Proc., 713, JJ11.55.18 (2002).Google Scholar
21. McGrail, B.P., Bacon, D.H., Icenhover, J.P., Mann, F.M., Puigh, R.J., Shaef, H.T., Matigod, S.F.. J. Nucl. Mat., 298, 95111 (2001).Google Scholar