Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T21:31:22.295Z Has data issue: false hasContentIssue false

The role of interfaces in thin-film CdTe solar cells

Published online by Cambridge University Press:  01 February 2011

M. J. Romero
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401-3393 Phone: 303-384-6653, Fax: 303-384-6604, Email: [email protected]
T. A. Gessert
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401-3393 Phone: 303-384-6653, Fax: 303-384-6604, Email: [email protected]
M. M. Al-Jassim
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401-3393 Phone: 303-384-6653, Fax: 303-384-6604, Email: [email protected]
R. G. Dhere
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401-3393 Phone: 303-384-6653, Fax: 303-384-6604, Email: [email protected]
D.S. Albin
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401-3393 Phone: 303-384-6653, Fax: 303-384-6604, Email: [email protected]
H. R. Moutinho
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401-3393 Phone: 303-384-6653, Fax: 303-384-6604, Email: [email protected]
Get access

Abstract

Thin-film CdTe solar cells are very promising for future cost-effective photovoltaics. The photovoltaic effect in these cells is based on the extraction of photoexcited carriers by the field provided by the CdTe/CdS heterojunction. An additional interface with non-rectifying characteristics is needed to close the external circuit on the other side of the CdTe thin film. Finally, the transport of photoexcited carriers is influenced by the presence of grain boundaries (GBs). In this contribution, we investigate several aspects of these interfaces and their effects on the operation of CdTe solar cells by electron-beam-induced current (EBIC) and cathodoluminescence (CL) measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wu, X., Keane, J.C., Dhere, R.G., DeHart, C., Albin, D.S., Duda, A., Gessert, T.A., Asher, S., Levi, D.H., and, in Proceedings of the 17th European Photovoltaic Solar Energy Conference, Munich, Germany, October 2001.Google Scholar
2. Wu, X., Asher, S., Levi, D.H., King, D.E., Yan, Y., Gessert, T.A., and Sheldon, P., J. Appl. Phys. 89, 4564 (2001)Google Scholar
3. McMahon, T.J. and Fahrenbruch, A.L., in Proceedings of the 28th IEEE Photovoltaic Specialists Conference, pp. 539542 (2000).Google Scholar
4. Gessert, T.A., Duda, A., Asher, S.E., Narayanswamy, C., and Rose, D., in Proceedings of the 28th IEEE Photovoltaic Specialist Conference, pp. 654657 (2000).Google Scholar
5. Galloway, S.A., Edwards, P.R., and Durose, K., Solar Energy Materials and Solar Cells 57, 61 (1999)Google Scholar
6. Yan, Y., Albin, D., and Al-Jassim, M.M., Appl. Phys. Lett. 78, 171 (2000)Google Scholar
7. Moutinho, H.R., Dhere, R.G., Al-Jassim, M.M., Ballif, C., Levi, D.H., Swartzlander, A.B., Young, M.R., Kazmerski, L.L., in Proceedings of the 28th IEEE Photovoltaic Specialist Conference, pp. 646649 (2001).Google Scholar
8.See, for example, Grecu, D., and Compaan, A.D., Appl. Phys. Lett.75, 361 (1999)Google Scholar
9. Kittler, M., Seifert, W., Mat. Sci. Eng. B. 42, 8 (1996).Google Scholar
10. Romero, M.J., Gessert, T.A., and Al-Jassim, M.M., Appl. Phys. Lett. (2002).Google Scholar