No CrossRef data available.
Published online by Cambridge University Press: 22 February 2011
Carbon-doped base GaAs/AlGaAs HBTs display current-induced decreases in dc gain which are correlated with the amount of hydrogen incorporated in the base layer during growth by Metalorganic Molecular Beam Epitaxy (MOMBE). During device operation, minority carrier injection induced debonding of hydrogen from neutral C-H complexes leads to an increase in effective base doping level and therefore to a decrease in gain. Post-growth in-situ or ex-situ annealing eliminates this effect by breaking up the C-H complexes. Properly designed HBTs are stable even for very high collector current densities (105 A · cm−2)
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.