No CrossRef data available.
Article contents
Role of CSL Boundaries on Displacement Cascades in β-SiC
Published online by Cambridge University Press: 23 January 2013
Abstract
Molecular dynamics (MD) simulations are carried out to understand the mechanisms of damage production and recovery near grain boundaries in β-SiC under neutron irradiation. Our investigations show that the damage generated by radiation is reduced by the presence of a ∑9{122}[110] tilt grain boundary. Directional displacements which are averaged over an isoconfigurational ensemble are used to characterize the statistical nature of atomic mobility near the grain boundary.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2013
References
REFERENCES
Capano, M. A., Trew, R. J., Mater. Res. Soc. Bull.
22, 19 (1997).10.1557/S0883769400032711CrossRefGoogle Scholar
Choyke, W. J., Pensl, G., Mater. Res. Soc. Bull.
22, 25 (1997).10.1557/S0883769400032723CrossRefGoogle Scholar
Raffray, A. R., Jones, R., Aiello, G., Billone, M., Giancarli, L., Golfier, H., Hasegawa, A., Katoh, Y., Kohyama, A., Nishio, S., Riccardi, B. and Tillack, M. S., Fusion Eng. and Design.
55, 55 (2001).10.1016/S0920-3796(01)00181-8CrossRefGoogle Scholar
Giancarli, L., Golfier, H., Nishio, S., Raffray, R., Wong, C. and Yamada, R., Fusion Eng. and Design.
61 – 62, 307 (2002).10.1016/S0920-3796(02)00213-2CrossRefGoogle Scholar
Zhang, Y., Ishimaru, M., Varga, T., Oda, T., Hardiman, C., Xue, H., Katoh, Y., Shannon, S. and Weber, W. J., Phys. Chem. Chem. Phys.
14, 13429 (2012).10.1039/c2cp42342aCrossRefGoogle Scholar
Bai, X-M., Voter, A. F., Hoagland, R. G., Nastasi, M. and Uberuaga, B. P., Science
327, 1631 (2010).10.1126/science.1183723CrossRefGoogle Scholar
Demkowicz, M. J., Hoagland, R. G. and Hirth, J. P., Phys. Rev. Lett.
100, 136102 (2008).10.1103/PhysRevLett.100.136102CrossRefGoogle Scholar
Misra, A., Demkowicz, M.J., Zhang, X. and Hoagland, R.G., JOM
59, 62 (2007).10.1007/s11837-007-0120-6CrossRefGoogle Scholar
Swaminathan, N., wojdyr, M., Morgan, D. D. and Szlufarska, I., J. App. Phys.
111, 054918 (2012).10.1063/1.3693036CrossRefGoogle Scholar
Kohler, C., Phys. Stat. Sol.(b)
234, 522 (2002)10.1002/1521-3951(200211)234:2<522::AID-PSSB522>3.0.CO;2-Y3.0.CO;2-Y>CrossRef3.0.CO;2-Y>Google Scholar
Hagege, S., Shindo, D., Hiraga, K. and Hirabayashi, M., J. Phys. IV Colloq.
51, C1–167 (1990).Google Scholar
Godon, C., Ragaru, C., Hardouin Duparc, O.B. M. and Lancin, M., Mater. Sci. Forum
294–296, 277 (1999).Google Scholar
Kohyama, M., Modelling Simul. Mater. Sci. Eng.
10, R31–R59 (2002).10.1088/0965-0393/10/3/202CrossRefGoogle Scholar
Plimpton, S., J Comp Phys, 117, 1 (1995). (http://lammps.sandia.gov/)10.1006/jcph.1995.1039CrossRefGoogle Scholar
Devanathan, R., Diaz, T.. Rubia, De la and Weber, W. J., J. Nucl. Mater.
253, 47 (1998).10.1016/S0022-3115(97)00304-8CrossRefGoogle Scholar