Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T01:50:40.102Z Has data issue: false hasContentIssue false

The Role of Calcareous Soils in SCC of X52 Pipeline Steel

Published online by Cambridge University Press:  11 May 2015

A. Contreras*
Affiliation:
Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, Col. San Bartolo Atepehuacan, C.P. 07730, México D.F.
L. M. Quej-Aké
Affiliation:
Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, Col. San Bartolo Atepehuacan, C.P. 07730, México D.F.
C. R. Lizárraga
Affiliation:
Universidad Autónoma de Campeche, Campeche, México, ave. Agustín Melgar s/n, Col Buenavista, P.O. Box 24039, Campeche, México.
T. Pérez
Affiliation:
Universidad Autónoma de Campeche, Campeche, México, ave. Agustín Melgar s/n, Col Buenavista, P.O. Box 24039, Campeche, México.
*
*Contacting author email: [email protected]
Get access

Abstract

Susceptibility to external stress corrosion cracking (ESCC) of API X52 pipeline steel in calcareous soil containing different moisture content has been investigated using slow strain rate tests (SSRT). This type of soil is common of the state of Campeche Mexico and has a pH around 8. The results indicate that X52 pipeline steel was susceptible to external SCC only in the saturated calcareous soil, showing some micro cracks in the gage section of the SSR specimen. It was observed that some micro cracks were found at the bottom of micro-pits. Which indicate that first develop a pit and this evolved with time and micro-strain like a crack. Few micro cracks were observed as initiation of SCC close to surface failure. The mechanism of SCC may be influenced by formation and rupture film of carbonates.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cazenave, P., Tandon, S., Gao, M., Krishnamurthy, R., Peverelli, R., Moreno, C., Díaz, E., Assessment and management of SCC in a liquid pipeline: case study, Proceedings of the 8th International Pipeline Conference (IPC-2010) Sept. 27-Oct. 1, 2010, Calgary, Alberta, Canada, Paper No. 31140. CrossRefGoogle Scholar
Leis, B.N. and Eiber, R.J., Stress-Corrosion Cracking On Gas-Transmission Pipelines: History, Causes, and Mitigation, Proceedings of First International Business Conference on Onshore Pipelines, Berlin, (1997.). Google Scholar
National Energy Board (NEB), Report of the Inquiry-Stress Corrosion Cracking on Canadian Oil and Gas Pipelines, (1996). Google Scholar
Arafin, M.A., Szpunar, J.A., Materials Science and Engineering A, 528, 4927 (2011).CrossRefGoogle Scholar
Omura, T., Amaya, H., Asahi, H., Sawamura, M., Kimura, M., Corrosion, Paper No. 09092 (2009) Google Scholar
Sawamura, M., Asahi, H., Omura, T., Kishikawa, H., Ishikawa, N., Kimura, M., Corrosion, Paper No.11286, (2011). Google Scholar
Asahi, H., Kushida, T., Kimura, M., Fukai, H., Okano, S., Corrosion, 55, 644 (1999).CrossRefGoogle Scholar
González Rodríguez, J.G., Casales, M., Salinas Bravo, V.M., Albarrán, J.L., Martínez, L., Corrosion, 58, 584 (2002).CrossRefGoogle Scholar
Beavers, J.A., Harle, B.A., Journal of Offshore Mechanics and Arctic Engineering, ASME, 123, 147 (2001). Google Scholar
Parkins, R.N., Stress Corrosion Cracking, Uhlig’s Corrosion Handbook, second edition, Edited by Winston Revie, R. pp. 191 (2000).Google Scholar
Parkins, R.N., Blanchard, W.K., Delanty, B.S., Corrosion, 50, 394 (1994).CrossRefGoogle Scholar
Elboujdaini, M., Wang, Y.Z., Revie, R.W., Initiation of stress corrosion cracking on X-65 linepipe steels in near-neutral pH environment, International Pipeline Conference (IPC) ASME, 967, (2000). CrossRefGoogle Scholar
Shigeru, E., Moriyasu, N., Yasuo, K., Kazuyoshi, U., ISIJ International, 34, 217 (1994).Google Scholar
Pan, B.W., Peng, X., Chu, W.Y., Su, Y.J., Qiao, L.J., Materials Science and Engineering A, 434, 76 (2006).CrossRefGoogle Scholar
Bulger, J., Luo, J., Effect of microstructure on near-neutral pH SCC, International Pipeline Conference (IPC) ASME, 947, (2000). CrossRefGoogle Scholar
Delanty, B.S., O'Beirne, J., Oil & Gas Journal, 15, 39 (1992).Google Scholar
Szklarska, Z., Xia, Z., Rebak, R.B., Corrosion, 50, 334 (1994).CrossRefGoogle Scholar
NACE TM-0198 Slow Strain Rate Test Method for Screening Corrosion-Resistant Alloys (CRAs) for Stress Corrosion Cracking in Sour Oilfield Service, (2004). Google Scholar
Ugiansky, G. M., Payer, J.H. (Eds.), Stress Corrosion Cracking––The Slow Strain Rate Technique, American Society for Testing and Materials, Philadelphia, ASTM STP 665, (1979). CrossRefGoogle Scholar
Kane, R. D., Joia, C.J.B.M., Small, A.L.L.T., Ponciano, J.A.C., Materials Performance, 36, 71 (1997).Google Scholar
ASTM G-129, Slow strain rate testing to evaluate the susceptibility of metallic materials to environmentally assisted cracking, (2013). Google Scholar
Contreras, A., Albiter, A., Salazar, M., Pérez, R., Materials Science and Engineering A, 407, 45 (2005).CrossRefGoogle Scholar
Contreras, A., Hernández, S.L., Galván, R., Mater. Res. Symp. Proc., 1275, 43 (2011).Google Scholar
Velázquez, Z., Guzmán, E., Espinosa, M.A., Contreras, A., Mater. Res. Soc. Symp. Proc., 1242, 69 (2010).Google Scholar
Contreras, A., Espinosa Medina, M. A., Galván Martínez, R., Mater. Res. Soc. Symp. Proc., 1275, 53 (2011).Google Scholar
Fang, B. Y., Atrens, A., Wang, J. Q., Han, E.H., Zhu, Z.Y., Ke, W., J. of Materials Science, 38, 127 (2003).CrossRefGoogle Scholar
Parkins, R.N., Fessler, R.R., Materials in Engineering Applications, 1, 80 (1978).CrossRefGoogle Scholar
Gu, B., Yu, W.Z., Luo, J.L., Mao, X., Corrosion, 55, 312 (1999).CrossRefGoogle Scholar
Contreras, A., Hernández, S.L., Orozco Cruz, R., Galván Martínez, R., Materials & Design, 35, 281 (2012).CrossRefGoogle Scholar
Contreras, A., Sosa, E., Espinosa, M.A., Mater. Res. Soc. Symp. Proc., 1242, 43 (2010).Google Scholar
Jack, T. R., Erno, B., Krist, K., Fessler, R.R., NACE International Corrosion, Paper No. 00362 (2000). Google Scholar
Benmoussat, A., Hadjel, M., Journal of Corrosion Science and Engineering, 7, 1 (2005).Google Scholar
Liu, Z.Y., Li, X.G., Du, C.W., Lu, L., Zhang, Y.R., Cheng, Y.F., Corrosion Science, 51, 895 (2009).CrossRefGoogle Scholar
Fang, B.Y., Eadie, R.L., Chen, W.X., Elboujdaini, M., Corrosion Engineering Science and Technology, 45, 302 (2010).CrossRefGoogle Scholar
Shi, P., Mahadevan, S., Engineering Fracture Mechanics, 68, 1493 (2001).CrossRefGoogle Scholar