Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-16T19:19:23.919Z Has data issue: false hasContentIssue false

Robot Assisted Synthesis and Characterization of Polyester-based Polyurethanes

Published online by Cambridge University Press:  18 May 2015

Stefan Baudis
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany
Andreas Lendlein
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany Tianjin-University - Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Kantstr. 55, 14513 Teltow, Germany
Marc Behl
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany Tianjin-University - Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Kantstr. 55, 14513 Teltow, Germany
Get access

Abstract

Dihydroxy telechelics are precursors for the synthesis of multiblock copolymers. In order to synthesize high molecular weight polymers with good elastic properties it is necessary to gain detailed knowledge of the reaction behavior of these precursors. Therefore it was explored whether the polyaddition reaction of polyester-diols can be established in a robotic synthesizer platform to facilitate the elucidation of reaction characteristics. A series of 16 reactions was performed using a telechelic polyester and trimethylhexamethylene diisocyanate. The chain extension behavior of the building block was compared with respect to the Carothers equation. It was found, that the chain extension behavior follows the expected trend. The molecular weight of the polymers increased when the optimal ratio of reactive groups was approached.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Rojas, R., Harris, N.K., Piotrowska, K., and Kohn, J., J. Polym. Sci., Part A: Polym. Chem. 47, 49 (2009).CrossRefGoogle Scholar
Guerrero-Sanchez, C., Abeln, C.H., and Schubert, U.S., J. Polym. Sci., Part A: Polym. Chem. 43, 4151 (2005).CrossRefGoogle Scholar
Hoogenboom, R., Fijten, M.W.M., Meier, M.A.R., and Schubert, U.S., Macromol. Rapid Commun. 24, 92 (2003).CrossRefGoogle Scholar
Meier, M.A.R., Gohy, J.-F., Fustin, C.-A., and Schubert, U.S., J. Am. Chem. Soc. 126, 11517 (2004).CrossRefGoogle Scholar
Zhang, H., Fijten, M.W.M., Hoogenboom, R., Reinierkens, R., and Schubert, U.S., Macromol. Rapid Commun. 24, 81 (2003).CrossRefGoogle Scholar
Paulus, R.M., Fijten, M.W.M., de la Mar, M.J., Hoogenboom, R., and Schubert, U.S., QSAR Comb. Sci. 24, 863 (2005).CrossRefGoogle Scholar
Bosman, A.W., Heumann, A., Klaerner, G., Benoit, D., Fréchet, J.M.J., and Hawker, C.J., J. Am. Chem. Soc. 123, 6461 (2001).CrossRefGoogle Scholar
Anderson, D.G., Lynn, D.M., and Langer, R., Angew. Chem., Int. Ed. 42, 3153 (2003).CrossRefGoogle Scholar
Cranford, S.W., de Boer, J., van Blitterswijk, C.A., and Buehler, M.J., Adv. Mater. (Weinheim, Ger.) 25, 802 (2013).CrossRefGoogle Scholar
Majoros, L.I., Dekeyser, B., Hoogenboom, R., Fijten, M.W.M., Haucourt, N., and Schubert, U.S., J. Polym. Sci., Part A: Polym. Chem. 47, 3729 (2009).CrossRefGoogle Scholar
Majoros, L.I., Dekeyser, B., Hoogenboom, R., Fijten, M.W.M., Geeraert, J., Haucourt, N., and Schubert, U.S., J. Polym. Sci., Part A: Polym. Chem. 48, 570 (2010).CrossRefGoogle Scholar