Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T11:15:23.218Z Has data issue: false hasContentIssue false

Rheology and Biocompatibility of Poly(lactide)-poly(ethylene oxide)-poly(lactide) Hydrogels

Published online by Cambridge University Press:  01 February 2011

Sarvesh K. Agrawal
Affiliation:
Department of Polymer Science and Engineering, University of Massachusetts Amherst 120. Governors Drive, Amherst, MA 01003, U.S.A.
Kyuong S. Chin
Affiliation:
Department of Polymer Science and Engineering, University of Massachusetts Amherst 120. Governors Drive, Amherst, MA 01003, U.S.A.
Naomi Sanabria-Delong
Affiliation:
2Department of Chemical Engineering, University of Massachusetts Amherst 686, North Pleasant Street, Amherst, MA 01003, U.S.A.
Khaled A. Aamer
Affiliation:
2Department of Chemical Engineering, University of Massachusetts Amherst 686, North Pleasant Street, Amherst, MA 01003, U.S.A.
Heidi Sardinha
Affiliation:
Department of Polymer Science and Engineering, University of Massachusetts Amherst 120. Governors Drive, Amherst, MA 01003, U.S.A.
Gregory N. Tew
Affiliation:
2Department of Chemical Engineering, University of Massachusetts Amherst 686, North Pleasant Street, Amherst, MA 01003, U.S.A.
Susan C. Roberts
Affiliation:
Department of Polymer Science and Engineering, University of Massachusetts Amherst 120. Governors Drive, Amherst, MA 01003, U.S.A.
Surita R. Bhatia
Affiliation:
Department of Polymer Science and Engineering, University of Massachusetts Amherst 120. Governors Drive, Amherst, MA 01003, U.S.A.
Get access

Abstract

We report rheological data on hydrogels formed from triblock copolymers of poly(L-lactide) (PLLA) and poly(ethylene oxide) (PEO). We are able to create gels with elastic moduli greater than 10,000 Pa, which is an order of magnitude higher than previously achieved with related physically associated gels of similar chemistry. Moreover, the value of the elastic modulus strongly depends on PLLA block length, offering a mechanism to control the mechanical properties as desired for particular applications. Additionally, we have developed protocols for using these materials for cell encapsulation and present preliminary cell viability studies for encapsulated human liver cells (HepG2 cell line). Our results have implications for the design of new materials for soft tissue engineering, where native tissues have moduli in the kPa range.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Younes, H. and Cohn, D., Journal of Biomedical Materials Research 21 (11), 13011316 (1987).Google Scholar
2. Kubies, D., Rypacek, F., Kovarova, J. et al., Biomaterials 21 (5), 529536 (2000).Google Scholar
3. Kricheldorf, H. R. and Meierhaack, J., Makromolekulare Chemie-Macromolecular Chemistry and Physics 194 (2), 715725 (1993).Google Scholar
4. Kissel, T., Li, Y. X., and Unger, F., Advanced Drug Delivery Reviews 54 (1), 99134 (2002).Google Scholar
5. Li, S. M., Rashkov, I., Espartero, J. L. et al., Macromolecules 29 (1), 5762 (1996).Google Scholar
6. Li, Y. X. and Kissel, T., Journal of Controlled Release 27 (3), 247257 (1993).Google Scholar
7. Li, Y. X., Volland, C., and Kissel, T., Journal of Controlled Release 32 (2), 121128 (1994).Google Scholar
8. Rashkov, I., Manolova, N., Li, S. M. et al., Macromolecules 29 (1), 5056 (1996).Google Scholar
9. Molina, I., Li, S. M., Martinez, M. B. et al., Biomaterials 22 (4), 363369 (2001).Google Scholar
10. Liu, L., Li, C. X., Liu, X. H. et al., Polymer Journal 31 (10), 845850 (1999).Google Scholar
11. Saito, N., Okada, T., Horiuchi, H. et al., Journal of Bone and Joint Surgery-American Volume 83A, S92–S98 (2001).Google Scholar
12. Lee, C. W., Kang, Y. G., and Jun, K., Korea Polymer Journal 9 (2), 8491 (2001).Google Scholar
13. Lee, H. T. and Lee, D. S., Macromolecular Research 10 (6), 359364 (2002).Google Scholar
14. Shim, M. S., Lee, H. T., Shim, W. S. et al., Journal of Biomedical Materials Research 61 (2), 188196 (2002).Google Scholar
15. Jeong, B., Bae, Y. H., and Kim, S. W., Macromolecules 32 (21), 70647069 (1999).Google Scholar
16. Zhong, Z. Y., Dijkstra, P. J., Jan, F. J. et al., Macromolecular Chemistry and Physics 203, 17971803 (2002).Google Scholar
17. Fujiwara, T., Mukose, T., Yamaoka, T. et al., Macromolecular Bioscience 1 (5), 204208 (2001).Google Scholar
18. Aamer, K. A., Sardinha, H., Tew, G. N. et al., Biomaterials 25, 10871093 (2004).Google Scholar
19. Frank, E. H. and Grodzinsky, A. J., J Biomech Eng 20, 629639 (1987).Google Scholar
20. Yu, Q. L., Zhou, J. B., and Fung, Y. C., Am. J. Physio. 265, H52–H60 (1993).Google Scholar
21. Carter, F. J., Frank, T. G., Davies, P. J. et al., Med. Image Analysis 5, 231236 (2001).Google Scholar
22. Erkamp, R. Q., Wiggins, P., Skovoroda, A. R. et al., Ultrasonic Imaging 20, 1728 (1998).Google Scholar
23. Hutmacher, D, Journal of Biomaterials Science Polymer Edition 12(1), 107124 (2001).Google Scholar