Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T04:59:57.798Z Has data issue: false hasContentIssue false

RF-Sputtered ZnO Thin Films: The Tailoring of Structural, Electrical and Optical Properties

Published online by Cambridge University Press:  18 July 2011

Cristina Besleaga
Affiliation:
MDEO, Faculty of Physics, University of Bucharest, P.O. Box MG-11, Bucharest-Magurele, 077125, Romania.
George E. Stan
Affiliation:
National Institute of Materials Physics, P.O. Box MG-7, Bucharest-Magurele, 077125, Romania.
Lucian Ion
Affiliation:
MDEO, Faculty of Physics, University of Bucharest, P.O. Box MG-11, Bucharest-Magurele, 077125, Romania.
Stefan Antohe
Affiliation:
MDEO, Faculty of Physics, University of Bucharest, P.O. Box MG-11, Bucharest-Magurele, 077125, Romania.
Get access

Abstract

We report on the influence of radio-frequency magnetron sputtering variables (working pressure and deposition atmosphere) and post-deposition thermal treatment processing upon the structural, optical and electrical properties of c-axis highly textured ZnO thin films. The films’ crystallinity increased progressively with argon pressure for the inert atmosphere experiments and with the oxygen dilution in the working atmosphere (up to 10%) for the reactive atmosphere experiments. The post-deposition annealing treatment at 450°C/1h in air reduced the strain in the ZnO films and enhanced their crystallinity and texturing. The ZnO films had an average transmittance of ∼90% in visible range and an average band-gap of ∼3.4 eV, regardless of the sputtering variables used. The samples prepared at the higher argon pressure (0.45 Pa) had a resistivity with one order of magnitude smaller than the samples prepared at the lower pressures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Özgür, Ü., Alivov, Ya. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., Avrutin, V., Cho, S.-J., and Morkoç, H., J. Appl. Phys. 98, 041301 (2005).Google Scholar
2. Gâlcă, A. C., Secu, M., Vlad, A., and Pedarnig, J. D., Thin Solid Films 518, 4603 (2010).Google Scholar
3. Ghica, C., Ion, L., Epurescu, G., Nistor, L., Antohe, S., and Dinescu, M., J. Nanosci. Nanotechnol. 10, 1322 (2010).Google Scholar
4. Segawa, H., Sakurai, H., Izumi, R., Hayashi, T., Yano, T., and Shibata, S., J. Mater. Sci. 46, 3537 (2011).Google Scholar
5. Tricot, S., Nistor, M., Millon, E., Boulmer-Leborgne, C., Mandache, N. B., Perriere, J., and Seiler, W., Surf. Sci. 604, 2024 (2010).Google Scholar
6. Li, H., Qiu, H., Yu, M. P., and Chen, X. B., Mater. Chem. Phys. 126, 866 (2011).Google Scholar
7. Liu, B. T., Zhou, Y., Zheng, H. F., Li, M., Guo, Z., Zhao, Q. X., and Peng, Y. C., Rare Metals 30, 170 (2011).Google Scholar
8. Wasa, K., Haber, M., and Adachi, H., Thin Films Material Technology: Sputtering of Compound Materials, William Andrew, 2005.Google Scholar
9. Stan, G. E., Morosanu, C. O., Marcov, D. A., Pasuk, I., Miculescu, F., and Reumont, G., Appl. Surf. Sci. 255, 9132 (2009).Google Scholar
10. Bourgoin, J., Lannoo, M., Point Defects in Semiconductors: Experimental Aspects II, Springer Series in Solid State Sciences, vol. 35, (Springer, Berlin, 1983), p. 219246.Google Scholar
11. Conchon, F., Renault, P. O., Goudeau, P., LeBourhis, E., Sondergard, E., Barthel, E., Grachev, S., Gouardes, E., Rondeau, V., Gy, R., Lazzari, R., Jupille, J., and Brun, N., Thin Solid Films 518, 5237 (2010).Google Scholar
12. Kim, Y. -S., Park, C. H., Phys. Rev. Let. 102, 086403 (2009).Google Scholar
13. Mott, N. F., J. Non-Cryst. Solids 1, 1 (1968).Google Scholar