Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T01:49:40.111Z Has data issue: false hasContentIssue false

Reusable hybride CoFe2O4-ZnO hollow nanosphere photocatalysts

Published online by Cambridge University Press:  11 January 2012

A. Wilson
Affiliation:
Department of Physics, The University of Memphis, Memphis, TN 38152
S. R. Mishra
Affiliation:
Department of Physics, The University of Memphis, Memphis, TN 38152
B. K. Rai
Affiliation:
Department of Physics, The University of Memphis, Memphis, TN 38152
R.K. Gupta
Affiliation:
Department of Physics, Materials Science, and Astronomy, Missouri State University, Springfield, MO 65897
K. Ghosh
Affiliation:
Department of Physics, Materials Science, and Astronomy, Missouri State University, Springfield, MO 65897
Get access

Abstract

Magnetically separable and reusable core-shell CoFe2O4-ZnO photocatalyst nanospheres were prepared via hydrothermal synthesis technique using glucose derived carbon nanospheres as template. The morphology and phase of core-shell hybrid structure of CoFe2O4-ZnO was assessed via TEM, and XRD. The UV-vis photocatalytic activity of the composite was assessed via measuring the degradation rate of modeled pollutant methylene blue in water. The magnetic composite showed high UV photocatalytic activity for the degradation of methylene blue. The photocatalytic activity was found to be ZnO shell thickness dependent. Thicker ZnO shells lead to higher rate of photocatalytic activity. Hybrid nanospheres recovered using external magnetic field demonstrated good repeatability of photocatalytic activity. These results promise the reusability of hybrid nanospheres for photocatalytic activity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mukherjee, P. S. and Ray, A. K., Chem. Eng. Technol. 22, 253 (1999).Google Scholar
2. Arslan, I., Balcioglu, I. A., and Bahnemann, D. W., Appl. Catal. B 26, 193(2000).Google Scholar
3. Yamazaki, S., Matsunaga, S., and Hori, K., Water Res. 35, 1022 (2001).Google Scholar
4. Kominami, H., Kumamoto, H., Kera, Y., and Ohtani, B., Appl. Catal. B 30, 329 (2001).Google Scholar
5. Arabatzis, I. M., Antonaraki, S., Stergiopoulos, T., and Hiskia, A., J. Photochem. Photobiol. A 149, 237 (2002).Google Scholar
6. Horikoshi, S., Watanabe, N., Onishi, H., Hidaka, H., and Serpone, N., Appl. Catal. B 37, 117 (2002).Google Scholar
7. Beydoun, D., Amal, R., Low, G., and McEvoy, S., J. Phys. Chem. B 104, 4387 (2000).Google Scholar
8. Beydoun, D., Amal, R., Scott, J., Low, G., and McEvoy, S., Chem. Eng. Technol. 24, 745 (2001).Google Scholar
9. Chen, F., Xie, Y., Zhao, J., and Luo, G., Chemosphere, 44, 1159 (2001).Google Scholar
10. Gao, Y., Chen, B. H., Li, H. L., and Ma, Y. X., Mater. Chem. Phys. 80, 348 (2003).Google Scholar
11. Sakthivel, S., Neppolian, B., Shankar, M. V., Arabindoo, B., Palanichamy, M., and Murugesan, V., Sol. Energy Mater. Sol. Cells, 77, 65 (2003).Google Scholar
12. Khodja, A. A., Sehili, T., Pilichowski, J. F., and Boule, P., J. Photochem. Photobiol. A 141, 231 (2001).Google Scholar
13. Jing, L., Wang, D., Wang, B., Li, S., Xin, B., Fu, H., and Sun, J., J. Mol. Catal. A 244, 193 (2006).Google Scholar
14. Stroyuk, A. L., Shvalagin, V. V., and Kuchmii, S. Y., J. Photochem. Photobio. A 173, 185 (2005).Google Scholar
15. Jing, L., Qu, Y., Wang, B., Li, S., Jiang, B., Yang, L., Fu, W., and Fu, H., J. Sun, Sol. Energy Mater. Sol. Cells, 90, 1773 (2006).Google Scholar
16. Wang, X., Hu, P., Fangli, Y., and Yu, L.. J. Phys. Chem. C 111, 6706 (2007).Google Scholar
17. Yu, J. and Yu, X., Environ. Sci. Technol. 42, 4902 (2008).Google Scholar
18. Sun, X. M. and D Li, Y., Angew. Chem. Int. Ed. 43, 3827 (2004).Google Scholar
19. Titirici, M. M., Antonietti, M., Thomas, A., Chem. Mater. 18, 3808 (2006).Google Scholar
20. Meng, Y., Chen, D., and Jiao, X. L., Eur. J. Inorg. Chem. 25, 4019 (2008).Google Scholar
21. Sun, X., Liu, J., and Li, Y., Chem. Eur. J. 12, 2039 (2006).Google Scholar
22. Zhang, G., Xu, W., Li, Z., Hu, W., and Wang, Y., J. Magn. Magn. Mater. 321, 1424 (2009).Google Scholar
23. Zhang, Y. Y. and Mu, J., Nanotechnology, 18, 075606 (2007).Google Scholar
24. Yang, Y., Chen, H., Zhao, B., and Bao, X., J. Cryst. Growth. 263, 447(2004).Google Scholar
25. Cullity, B. D., Elements of X-ray Diffraction (Addision Wesley, Reading, MA, 1978) p.100.Google Scholar
26. , K. Shafi, V. P. M., Gedanken, A., Prozorov, R., and Balogh, J., Chem. Mater. 10, 3445 (1998).Google Scholar
27. Caruso, F., Spasova, M., Susha, A., Giersig, M., Caruso, R. A., Chem. Mater. 13, 109 (2001).Google Scholar
28. Lee, D., Kim, Y., Kang, Y., and Stroeve, P., J. Phys. Chem. B 109, 14939 (2005).Google Scholar
29. Wang, Y., Zhu, Q., and Zhang, H., J. Mater. Chem. 16, 1212 (2006).Google Scholar
30. Fujishima, A., Rao, T. N., and Tryk, D. A., J. Photochem. Photobio. C: Photochemistry Reviews, 1, pp. 121 (2000).Google Scholar
31. Yu, J. and Yu, X., Environ. Sci. Technol. 42, 4902 (2008).Google Scholar
32. Yu, H. G., Yu, J. G., Liu, S. W., and Mann, S., Chem. Mater. 19, 4327 (2007).Google Scholar
33. Yu, J. G., Yu, J. C., Leung, M. K. P., Ho, W. K., Cheng, B., Zhao, X. J., and C Zhao, J., J. Catal. 217, 69 (2003).Google Scholar