Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T17:43:18.706Z Has data issue: false hasContentIssue false

Resonant x-ray Scattering From the Surface of a Dilute Liquid Hg–Au Alloy

Published online by Cambridge University Press:  10 February 2011

E. DiMasi*
Affiliation:
Department of Physics, Brookhaven National Laboratory, Upton NY 11973
H. Tostmann
Affiliation:
Div. of Eng. and Appl. Sci. and Dept. of Physics, Harvard University, Cambridge MA 02138
B. M. Ocko
Affiliation:
Department of Physics, Brookhaven National Laboratory, Upton NY 11973
P. Huber
Affiliation:
Div. of Eng. and Appl. Sci. and Dept. of Physics, Harvard University, Cambridge MA 02138
O. G. Shpyrko
Affiliation:
Div. of Eng. and Appl. Sci. and Dept. of Physics, Harvard University, Cambridge MA 02138
P. S. Pershan
Affiliation:
Div. of Eng. and Appl. Sci. and Dept. of Physics, Harvard University, Cambridge MA 02138
M. Deutsch
Affiliation:
Department of Physics, Bar-Ilan University, Ramat-Gan 52100, Israel
L. E. Berman
Affiliation:
National Synchrotron Light Source, Brookhaven National Laboratory, Upton NY 11973
*
*Corresponding author: [email protected]
Get access

Abstract

We present the first resonant x-ray reflectivity measurements from a liquid surface. The surface structure of the liquid Hg-Au alloy system just beyond the solubility limit of 0.14at% Au in Hg had previously been shown to exhibit a unique surface phase characterized by a low-density surface region with a complicated temperature dependence. In this paper we present reflectivity measurements near the Au LIII edge, for 0.2at% Au in Hg at room temperature. The data are consistent with a concentration of Au in the surface region that can be no larger than about 30at%. These results rule out previous suggestions that pure Au layers segregate at the alloy surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Department of Chemistry, University of Florida, Gainesville FL 32611

References

REFERENCES

1. DiMasi, E. and Tostmann, H., Synchrotron Radiation News 12, 1999, 41.10.1080/08940889908260987Google Scholar
2. Tostmann, H., DiMasi, E., Shpyrko, O. G., Pershan, P. S., Ocko, B. M., and Deutsch, M., submitted to Phys. Rev. Lett. (June 1999).Google Scholar
3. DiMasi, E., Tostmann, H., Ocko, B. M., Pershan, P. S., and Deutsch, M., J. Phys. Chem. B 103, 1999, 9952.10.1021/jp9921553Google Scholar
4. Rolfe, C. and Hume-Rothery, W., J. Less-Common Met. 13, 1967, 1.10.1016/0022-5088(67)90041-0Google Scholar
5. Yang, X. M., Tonami, K., Tagahara, L. A., Hashimoto, K., Wei, Y., and Fujishima, A., Surface Science 319 (1994) L17; C. Battistoni, E. Bemporad, A. Galdikas, S. Kaĉiulis, G. Mattogno, S. Mickeviĉius, and V. Olevano, Appl. Surf. Science 103 (1996) 107; R. Nowakowski, T. Kobiela, Z. Wolfram, and R. Duś, Applied Surface Science 115 (1997) 217; J. Li and H. D. Abrufia, J. Phys. Chem. B 101, 1997, 2907.10.1016/0039-6028(94)90562-2Google Scholar
6. Schwab, G.-M., Ber. Bunsenges. 80, 1976, 746.10.1002/bbpc.19760800818Google Scholar
7. Kertes, A. S., Ed. Solubility Data Series, Vol. 25 “Metals in Mercury”, Pergamon Press, New York, 1986, p. 378; C. Guminski, J. Less-Common Metals, 168 (1991) 329.Google Scholar
8. DiMasi, E., Tostmann, H., Ocko, B. M., Pershan, P. S., and Deutsch, M., Phys. Rev. B 58 (1998) R13419, and references therein.10.1103/PhysRevB.58.R13419Google Scholar
9. Braslau, A., Pershan, P. S., Swislow, G., Ocko, B. M., and Als-Nielsen, J., Phys. Rev. A 38, 1988, 2457.10.1103/PhysRevA.38.2457Google Scholar
10. Materlik, G., Sparks, C. J., and Fischer, K., eds. Resonant Anomalous x-ray Scattering: Theory and Applications, North-Holland, Amsterdam, 1994, p. 47.Google Scholar
11. Error in the monochromator calibration causes the position of the inflection point to appear as 11.917 keV in the energy scan.Google Scholar
12. DiMasi, E. et al. , to be published.Google Scholar