Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:39:38.753Z Has data issue: false hasContentIssue false

Resonant Tunneling and the Substituent Effect on Negative Differential Resistance in a Molecular Junction

Published online by Cambridge University Press:  15 March 2011

Nikita Matsunaga
Affiliation:
Department of Chemistry and Biochemistry, Long Island University, Brooklyn, NY 11201
Karl Sohlberg
Affiliation:
Department of Chemistry, Drexel University, Philadelphia, PA 19104
Get access

Abstract

Recently there has been an explosion of interest in the potential use of individual molecules as electronic device elements. The electrical characteristics of molecular junctions, individual molecules spanning the gap between two metal electrodes, have been reported and certain molecular species have been found to exhibit highly nonlinear current versus applied-voltage (I/V) properties. Intriguingly, these nonlinearities (pronounced peaks) in the I/V behavior are extremely sensitive to the functionalization of the molecule forming the junction. The substitution of a single functional group can completely eliminate the nonlinear behavior. Many have suggested that resonant tunneling could lead to the observed nonlinearities. Resonant tunneling requires a double potential barrier along the electron transfer coordinate. We propose a possible physical origin for such a double potential barrier and support the model with first principles electronic structure calculations. Next we discuss a quantum mechanical tunneling model for electron transport through the double potential barrier. The model gives insight into the origin of nonlinear I/V behavior in molecular junctions and the effect of substituent functional groups on the junction molecule.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Joachim, C., Gimzewski, J. K., and Aviram, A., Nature 408, 541 (2000).Google Scholar
2. Tour, J. M., Kozaki, M., and Seminario, J. M., J. Am. Chem. Soc. 120, 8486 (1998).Google Scholar
3. Chen, J., Wang, W., Reed, M. A., Rawlett, A. M., Price, D. W., and Tour, J. M., App. Phys. Lett. 77, 1224 (2000).Google Scholar
4. Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P. and Tour, J. M., Science 278, 252 (1997).Google Scholar
5. Chen, J., Reed, M. A., Rawlett, A. M. and Tour, J. M., Science 286, 1550 (1999).Google Scholar
6. Ventra, M. Di, Pantelides, S. T., and Lang, N. D., App. Phys. Lett. 76, 3448 (2000).Google Scholar
7. Seminario, J. M., Zacarias, A. G., and Tour, J. M., J. Am. Chem. Soc. 122, 3013 (2000).Google Scholar
8. Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S. J., Windus, T. L., Dupuis, M., and Montgomery, J. A., J. Comput. Chem. 14, 1347 (1993).Google Scholar
9. Hehre, W.J., Ditchfield, R., Pople, J.A., J. Chem. Phys. 56, 2257 (1972).Google Scholar
10. Joachim, C. and Vinuesa, J. F., Europhys. Lett. 33, 635 (1996).Google Scholar
11. Davis, W. B., Svec, W. A., Ratner, M. A., and Wasielewski, M. R., Nature 396, 60 (1998).Google Scholar
12. Tipler, P. A., Modern Physics, (Worth, New York 1978).Google Scholar
13. Bohm, D., Quantum Theory, (Prentice Hall, Englewood Cliffs, NJ, 1951).Google Scholar
14. Ventra, M. Di, Pantelides, S. T., and Lang, N. D., Phys. Rev. Lett. 84, 979 (2000).Google Scholar
15. Burin, A. L. and Ratner, M. A., J. Chem. Phys. 113, 3941 (2000).Google Scholar
16. Datta, S., Tian, W., Hong, S., Reifenberger, R., Henderson, J. I., and Kubiak, C. P., Phys. Rev. Lett. 79, 2530 (1997).Google Scholar