Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:14:47.412Z Has data issue: false hasContentIssue false

Resonance Raman Spectroscopy to Study and Characterize Defects on Carbon Nanotubes and other Nano-Graphite Systems

Published online by Cambridge University Press:  01 February 2011

Ado Jorio
Affiliation:
Depto. de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
Luiz Gustavo Cançado
Affiliation:
Depto. de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
Bernardo R. A. Neves
Affiliation:
Depto. de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
Mauricio de Souza
Affiliation:
Depto. de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
Cristiano Fantini
Affiliation:
Depto. de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
Marcos A. Pimenta
Affiliation:
Depto. de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
G. Medeiros-Ribeiro
Affiliation:
Laboratório Nacional de Luz Síncrotron, Campinas, São Paulo, Brazil.
Georgii G. Samsonidze
Affiliation:
Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA.
Shin Grace Chou
Affiliation:
Dept. of Chemistry, MIT, Cambridge, MA, USA.
Gene Dresselhaus
Affiliation:
Francis Bitter Magnet Laboratory, MIT, Cambridge, MA, USA.
Mildred S. Dresselhaus
Affiliation:
Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA. Dept. of Physics, MIT, Cambridge, MA, USA.
A. M. Rao
Affiliation:
Dept. of Physics and Astronomy, Clemson University, South Carolina 29634, USA
Alexander Grüneis
Affiliation:
Dept. of Physics, Tohoku University and CREST JST, Sendai, Japan.
Riichiro Saito
Affiliation:
Dept. of Physics, Tohoku University and CREST JST, Sendai, Japan.
Get access

Abstract

The use of resonance Raman spectroscopy (RRS) to study and characterize single wall carbon nanotubes (SWNTs) is discussed, focusing on preliminary efforts for the development of the RRS to characterize defects in SWNTs. The disorder-induced D-band, disorder-induced peaks just above the first-order allowed graphite G-band, as well as the intermediate frequency modes (IFMs) appearing between the RBM and the D/G spectral region are addressed. RRS on nanographite ribbons and on a step-like defect in highly ordered pyrolytic graphite (HOPG) sheds light into the problem of characterizing specific defects in nano-related carbons.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dresselhaus, M. S., Dresselhaus, G. and Ph. Avouris, in Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Springer Series in Topics in Appl. Phys., Springer-Verlag, Berlin, 2001).Google Scholar
2. Bachilo, S. M., Strano, M. S., Kittrell, C., Hauge, R. H., Smalley, R. E., and Weisman, R. B., Science 298, 2361 (2002).Google Scholar
3. Jorio, A., Pimenta, M. A., Souza Filho, A. G., Saito, R., Dresselhaus, G., and Dresselhaus, M. S., New Journal of Physics 5, 1.1 (2003).Google Scholar
Dresselhaus, M. S., Dresselhaus, G., Jorio, A., Souza Filho, A. G., and Saito, R., Carbon 40, 2043 (2002).Google Scholar
4. Souza Filho, A. G., Jorio, A., Samsonidze, Ge. G., Dresselhaus, G., Saito, R., and Dresselhaus, M. S., Nanotechnology 14, 1130 (2003).Google Scholar
5. Terrones, M., Jorio, A., Endo, M., Rao, A. M., Kim, Y. A., Hayashi, T., Terrones, H., Charlier, J.-C., Dresselhaus, G., and Dresselhaus, M. S., Materials Today 7, 30 (2004).Google Scholar
6. Cançado, L. G., Pimenta, M. A., Jorio, A., Neves, R. A., Medeiros-Ribeiro, G., Enoki, T., Kobayashi, Y., Takai, K., Fukui, K., Dresselhaus, M. S., and Saito, R., Phys. Rev. Lett. 93, 047403 (2004).Google Scholar
7. Cançado, L. G., Pimenta, M. A., Neves, B. R. A., Dantas, M. S. S., and Jorio, A., Phys. Rev. Lett. In press.Google Scholar
8. Souza, M., Jorio, A., Fantini, C., Neves, B. R. A., Pimenta, M. A., Saito, R., Ismach, A., Joselevich, E., Brar, V. W., Samsonidze, Ge. G., Dresselhaus, G., and Dresselhaus, M. S., Phys. Rev. B 69, R241403 (2004).Google Scholar
9. Alvarez, L., Righi, A., Rols, S., Anglaret, E. and Sauvajol, J. L., Chem. Phys. Lett. 320, 441 (2000).Google Scholar
10. Fantini, C., Jorio, A., Souza, M., Ladeira, L. O., Pimenta, M. A., Souza Filho, A. G., Saito, R., Samsonidze, Ge. G., Dresselhaus, G. and Dresselhaus, M. S., Phys. Rev. Lett. 93, 087401 (2004).Google Scholar
11. Son, H., Hori, Y., Chou, S. G., Nezich, D., Samsonidze, Ge. G., Dresselhaus, G., Dresselhaus, M. S., and Barros, E., Appl. Phys. Lett. 85, 4744 (2004).Google Scholar
12. Thomsen, C. and Reich, S., Phys. Rev. Lett. 85, 5214 (2000).Google Scholar
13. Saito, R., Jorio, A., Souza Filho, A. G., Dresselhaus, G., Dresselhaus, M. S., and Pimenta, M. A., Phys. Rev. Lett. 88, 027401 (2002).Google Scholar
14. Saito, R., Grüneis, A., Samsonidze, Ge. G., Brar, V. W., Dresselhaus, G., Dresselhaus, M. S., Jorio, A., Cançado, L. G., Fantini, C., Pimenta, M. A., and Souza Filho, A. G., New Journal of Physics 5, 157 (2003).Google Scholar
15. Saito, R., Takeya, T., Kimura, T., Dresselhaus, G., and Dresselhaus, M. S., Phys. Rev. B 59, 2388 (1999).Google Scholar
16. Rahmani, A., Sauvajol, J.-L., Rols, S., and Benoit, C., Phys. Rev. B 66, 125404 (2002).Google Scholar