Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-09T08:17:30.019Z Has data issue: false hasContentIssue false

A Resistless Process for the Production of Patterned, Vertically Aligned ZnO Nanowires.

Published online by Cambridge University Press:  28 January 2011

Mikhail Ladanov
Affiliation:
Department of Electrical Engineering, University of South Florida, Tampa, FL, United States. Department of Mechanical Engineering, University of South Florida, Tampa, FL, United States. Nanotechnology Research and Education Center, University of South Florida, Tampa, FL, United States.
Kranthi Kumar Elineni
Affiliation:
Department of Mechanical Engineering, University of South Florida, Tampa, FL, United States.
Manoj Ram
Affiliation:
Department of Mechanical Engineering, University of South Florida, Tampa, FL, United States. Nanotechnology Research and Education Center, University of South Florida, Tampa, FL, United States.
Nathan D. Gallant
Affiliation:
Department of Mechanical Engineering, University of South Florida, Tampa, FL, United States.
Ashok Kumar
Affiliation:
Department of Mechanical Engineering, University of South Florida, Tampa, FL, United States. Nanotechnology Research and Education Center, University of South Florida, Tampa, FL, United States.
Garrett Matthews
Affiliation:
Department of Physics, University of South Florida, Tampa, FL, United States.
Get access

Abstract

ZnO nanostructures have attracted a great deal of interest because of their biocompatibility and outstanding optical and piezoelectric properties. Their uses are widely varying, including as the active element in sensors, solar cells, and nanogenerators. One of the major complications in device development is how to grow ZnO nanowires in well aligned and patterned films with predefined geometrical shape and aspect ratio. Controlled growth is required to achieve the optimal density of nanowires and to produce a defined geometric structure for incorporation in the device. In this work, we have presented a method by which vertically aligned ZnO nanowires could be grown in defined patterns on surfaces without the use of resists. We used a hydrothermal method to grow ZnO nanowires on a substrate through growth modifiers that was pre-patterned with a seeding solution by means of microcontact printing. This method produced vertically aligned ZnO nanowires of predefined size and shape with pattern resolution high enough for the production of rows of single nanowires. The nanowires were characterized by using scanning electron microscopy (SEM) and X-ray diffraction spectroscopy (XRD) techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Greene, L. E., Law, M., Goldberger, J., Kim, F., Johnson, J. C., Zhang, Y., Saykally, R. J. and Yang, P., Angew. Chem. Int. Ed. 42(26), 30313034 (2003).Google Scholar
2. Liu, C. H., Zapien, J. A., Yao, Y., Meng, X. M., Lee, C. S., Fan, S. S., Lifshitz, Y. and Lee, S. T., Adv. Mater. (Weinheim, Ger.) 15(10), 838841 (2003).Google Scholar
3. Fan, Z., Wang, D., Chang, P.-C., Tseng, W.-Y. and Lu, J. G., Appl. Phys. Lett. 85(24), 59235923 (2004).Google Scholar
4. Lu, M.-P., Song, J., Lu, M.-Y., Chen, M.-T., Gao, Y., Chen, L.-J. and Wang, Z. L., Nano Lett. 9(3), 12231227 (2009).Google Scholar
5. Wang, X., Song, J., Liu, J. and Wang, Z. L., Science 316 (5821), 102105 (2007).Google Scholar
6. Wang, Z. L. and Song, J., Science 312 (5771), 242246 (2006).Google Scholar
7. Law, M., Greene, L. E., Johnson, J. C., Saykally, R. and Yang, P., Nat. Mater. 4(6), 455459 (2005).Google Scholar
8. Chang, P.-C., Fan, Z., Wang, D., Tseng, W.-Y., Chiou, W.-A., Hong, J. and Lu, J. G., Chem. Mater. 16(24), 51335137 (2004).Google Scholar
9. Park, W. I., Kim, D. H., Jung, S. W. and Yi, G.-C., Appl. Phys. Lett. 80(22), 42324232 (2002).Google Scholar
10. Zhang, Y., Russo, R. E. and Mao, S. S., Appl. Phys. Lett. 87(13), 133115133115 (2005).Google Scholar
11. Lee, W., Jeong, M.-C. and Myoung, J.-M., Acta Mater. 52(13), 39493957 (2004).Google Scholar
12. Lyu, S. C., Zhang, Y., Lee, C. J., Ruh, H. and Lee, H. J., Chem. Mater. 15(17), 32943299 (2003).Google Scholar
13. Huang, M. H., Wu, Y., Feick, H., Tran, N., Weber, E. and Yang, P., Adv. Mater. (Weinheim, Ger.) 13(2), 113116 (2001).Google Scholar
14. Greene, L. E., Law, M., Tan, D. H., Montano, M., Goldberger, J., Somorjai, G. and Yang, P., Nano Lett. 5(7), 12311236 (2005).Google Scholar
15. Hsu, Y. F., Xi, Y. Y., Tam, K. H., Djurišić, A. B., Luo, J., Ling, C. C., Cheung, C. K., Ng, A. M. C., Chan, W. K., Deng, X., Beling, C. D., Fung, S., Cheah, K. W., Fong, P. W. K. and Surya, C. C., Adv. Funct. Mater. 18(7), 10201030 (2008).Google Scholar
16. Vayssieres, L., Adv. Mater. (Weinheim, Ger.) 15(5), 464466 (2003).Google Scholar
17. Xu, S., Wei, Y., Kirkham, M., Liu, J., Mai, W., Davidovic, D., Snyder, R. L. and Wang, Z. L., J. Am. Chem. Soc. 130(45), 1495814959 (2008).Google Scholar
18. Yoon, S.-H., Yang, H. and Kim, Y.-S., Nanotechnology 18(20), 205608205608 (2007).Google Scholar
19. Hsu, J. W. P., Tian, Z. R., Simmons, N. C., Matzke, C. M., Voigt, J. A. and Liu, J., Nano Lett. 5(1), 8386 (2005).Google Scholar
20. Sharp, K. G., Blackman, G. S., Glassmaker, N. J., Jagota, A. and Hui, C.-Y., Langmuir 20(15), 64306438 (2004).Google Scholar