No CrossRef data available.
Article contents
Resistive Losses at c-Si/a-Si:H/ZnO Contacts for Heterojunction Solar Cells
Published online by Cambridge University Press: 01 February 2011
Abstract
We study resistive losses at (p)c-Si/(p)Si:H/(n)ZnO heterojunction back contacts for high efficiency silicon solar cells. We find that a low tunnelling resistance for the (p)a-Si:H/(n)ZnO part of the junction requires deposition of Si:H with a high hydrogen dilution RH > 40 resulting in a highly doped μc-Si:H layer. Such a μc-Si:H layer if deposited directly on a Si wafer yields a surface recombination velocity of S 180 cm/s. Using the same layer as part of a (p)c-Si/(p)Si:H/(n)ZnO back contact in a solar cell results in an open circuit voltage Voc = 640 mV and a fill factor FF = 80 %. Insertion of an (i)a-Si-layer between the μc-Si:H and the wafer leads to a further decrease of S and, for the solar cells to an increase of VOC. However, if the thickness of this intrinsic layer exceeds a threshold of 3 nm, resistive losses lead to a degradation of the fill factor of the solar cells. These resistive losses result from a valence band offset δEV between a-Si:H and c-Si of about 600 meV. The fill factor losses overcompensate the VOC gain such that there is no benefit of the (i)a-Si:H interlayer for the overall solar cell performance when using an (i)a-Si:H/(p)uc-Si:H double layer.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2007