Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T15:35:19.475Z Has data issue: false hasContentIssue false

Resistive Electrical Switching of Cu+ and Ag+ based Metal-Organic Charge Transfer Complexes

Published online by Cambridge University Press:  01 February 2011

Robert Mueller
Affiliation:
[email protected], IMEC v.z.w., PT\SOLO\PME, Kapeldreef 75, Leuven, 3001, Belgium, 0032-16281908, 0032-16281097
Joris Billen
Affiliation:
[email protected], IMEC v.z.w., PT\SOLO\PME, Kapeldreef 75, Leuven, 3001, Belgium
Aaron Katzenmeyer
Affiliation:
[email protected], IMEC v.z.w., PT\SOLO\PME, Kapeldreef 75, Leuven, 3001, Belgium
Ludovic Goux
Affiliation:
[email protected], IMEC v.z.w., PT\CMOSRD\MEMORY, Kapeldreef 75, Leuven, 3001, Belgium
Dirk J. Wouters
Affiliation:
[email protected], IMEC v.z.w., PT\CMOSRD\MEMORY, Kapeldreef 75, Leuven, 3001, Belgium
Jan Genoe
Affiliation:
[email protected], IMEC v.z.w., PT\SOLO\PME, Kapeldreef 75, Leuven, 3001, Belgium
Paul Heremans
Affiliation:
[email protected], IMEC v.z.w., PT\SOLO, Kapeldreef 75, Leuven, 3001, Belgium
Get access

Abstract

Memory cells based on Cu+ and Ag+ metal-organic charge-transfer complexes, as for example CuTCNQ (where TCNQ denotes 7,7',8,8'-tetracyanoquinodimethane), are well known for their bistable resistive electrical switching since 1979. The switching mechanism however remained unclear for very long time. In this contribution we describe the different views (bulk vs. interfacial switching), give evidence for interfacial switching in the case of CuTCNQ, and present a model allowing explaining the bipolar resistive electrical switching by an interfacial effect, even for experiments considered until now as proof for bulk switching. The proposed switching mechanism is based on bridging of an ion-permeable layer (or gap) by conductive Cu channels, which are formed and dissolved by an electrochemical reaction implying monovalent Cu+ cations, originating from a solid ionic conductor (as for example CuTCNQ). The model was furthermore generalized to other memory systems consisting of a permeable layer and a solid ionic conductor, including also inorganic solid ionic conductors as for example Ag2S.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.http://www.itrs.net/Links/2006Update/2006UpdateFinal.htm (last accessed on 7th April 2008)Google Scholar
2. Baek, I.G. Lee, M.S. Seo, S. Lee, M.J. Seo, D.H. Suh, D.S. Park, J.C. Park, S.O. Kim, H.S. Yoo, I.K. Ching, U.I. and Moon, J.T. Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International, 587 (2004).Google Scholar
3. Hudgens, S. and Johnson, B. MRS Bull. 29, 829 (2004)Google Scholar
4. Kozicki, M.N. Park, M. and Mitkova, M. IEEE Trans. Nanotechnol. 4, 331 (2005).Google Scholar
5. Kozicki, M.N. Balakrishnan, M. Gopalan, C. Ratnakumar, C. and Mitkova, M. Non-Volatile Mem. Technol. Symp. (2005), 83.Google Scholar
6. Kaeriyama, S. Sakamoto, T. Sunamura, H. Mizuno, M. Kawaura, H. Hasegawa, T. Terabe, K. Nakayama, T. and Aono, M. IEEE J Solid-State Circ. 40, 168 (2005).Google Scholar
7. Meijer, G. Science 319, 1625 (2008).Google Scholar
8. Yang, Y. Ma, L. and Wu, J. MRS Bull. 29, 833 (2004).Google Scholar
9. Scott, J.C. and Bozano, L.D. Adv. Mat. 19, 1452 (2007).Google Scholar
10. Ling, Q.-D. Liaw, D.-J. Teo, E. Y.-H. Zhu, C. Chan, D. S.-H. Kang, E.-T. and Neoh, K.-G. Polymer 48, 5182 (2007).Google Scholar
11. Potember, R.S. Poehler, T.O. and Cowan, D.O. Appl. Phys. Lett. 34, 405 (1979).Google Scholar
12. Kever, T. Nauenheim, C. Böttger, U., and Waser, R. Thin Solid Films 515, 1893 (2006).Google Scholar
13. Müller, R., Billen, J. Naulaerts, R. Rouault, O. Goux, L. Wouters, D.J. Genoe, J. and Heremans, P. Mater. Res. Soc. Symp. Proc. 997, 101–10 (2007)Google Scholar
14. Müller, R., Jonge, S. De, Myny, K. Wouters, D.J. Genoe, J. and Heremans, P. Appl. Phys. Lett. 89, 223501 (2006).Google Scholar
15. Müller, R., Goux, L. Wouters, D.J. Genoe, J. and Heremans, P. (unpublished)Google Scholar
16. Oyamada, T. Tanaka, H. Matsushige, K. Sasabe, H. and Adachi, C. Appl. Phys. Lett. 83, 1252 (2003).Google Scholar
17. Müller, R., Naulaerts, R. Billen, J. Genoe, J. and Heremans, P. Appl. Phys. Lett. 90, 063503 (2007).Google Scholar
18. Potember, R.S. Poehler, T.O. Rappa, A. Cowan, D.O. and Bloch, A.N. J. Am. Chem. Soc. 102, 3659 (1980)Google Scholar
19. Kamitsos, E.I. Tzinis, C.H. and Risen, W.M. Jr., Solid State Commun. 42, 561 (1982).Google Scholar
20. Matsumoto, M. Nishio, Y. Tachibana, H. Nakamura, T. Kawabata, Y. Samura, H. and Nagamura, T. Chem. Lett. 1021 (1991).Google Scholar
21. Yamaguchi, S. and Potember, R.S. Mol. Cryst. Liq. Cryst. 267, 241 (1995).Google Scholar
22. Heintz, R.A. Zhao, H. Ouyang, X. Grandinetti, G. Cowen, J. Dunbar, K.R. Inorg. Chem. 38, 144 (1999).Google Scholar
23. Hefczyc, A. Beckmann, L. Becker, E. Johannes, H.-H. and Kowalsky, W. Phys. Stat. Sol. (a) 205, 647 (2008).Google Scholar
24. Sato, C. Wakamatsu, S. Tadokoro, K. and Ishii, K. J. Appl. Phys. 68, 6535 (1990).Google Scholar
25. Hoagland, J.J. Wang, X.D. and Hipps, K.W. Chem. Mater. 5, 54 (1993).Google Scholar
26. Kever, T. Böttger, U., Schindler, C. and Waser, R. Appl. Phys. Lett. 91, 083506 (2007).Google Scholar
27. Billen, J. Steudel, S. Müller, R., Genoe, J. and Heremans, P. Appl. Phys. Lett. 91, 263507 (2007).Google Scholar
28. Billen, J. Müller, R., Genoe, J. and Heremans, P. Proceed. 2nd Int. Conf. Mem. Technol. & Des., Giens (France) (2007) 135.Google Scholar
29. Müller, R., Naulaerts, R. Genoe, J. and Heremans, P. (unpublished).Google Scholar
30. Fan, Z.Y. Mo, X.L. Chen, G.R. and Lu, J.G. Rev. Adv. Mater. Sci. 5, 72 (2003).Google Scholar
31. Kozicki, M.N. Mitkova, M. Park, M. Balakrishnan, M. and Gopalan, C. Superlat. & Microstruct. 34, 459 (2003).Google Scholar
32. Terabe, K. Hasegawa, T. Nakayama, T. and Aono, M. RIKEN Rev. 37, 7 (2001).Google Scholar
33. Ohachi, T. and Taniguchi, I. J. Cryst. Growth 13-14, 191 (1972).Google Scholar
34. Serebrennikova, I. and White, H.S. Electrochem. Sol.-State Lett. 4, B4 (2001).Google Scholar
35. Serebrennikova, I. Lee, S. and White, H.S. Far. Discuss. 121, 199 (2002).Google Scholar
36. Müller, R., Krebs, C. Goux, L. Wouters, D.J. Genoe, J. and Heremans, P. (unpublished).Google Scholar
37. Müller, R., Genoe, J. and Heremans, P. (unpublished)Google Scholar
38. Weitz, R.T. Walter, A. Engl, R. Sezi, R. and Dehm, C. Nano Lett. 6, 2810 (2006).Google Scholar
39. Aratani, K. Ohba, K. Mizuguchi, T. Yasuda, S. Shiimoto, T. Tsushima, T. Sone, T. Endo, K. Kouchiyama, A. Sasaki, S. Maesaka, A. Yamada, N. and Narisawa, H. Electron Device Meeting (IEDM), 783 (2007)Google Scholar
40. Kever, T. Klopstra, B. Böttger, U., and Waser, R. 7th Ann. Non-Volatile Mem. Technol. Symp., 119 (2006)Google Scholar