Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:26:40.205Z Has data issue: false hasContentIssue false

Resistance Change Caused by Electrochemically Induced Carrier Injection in NiO Films.

Published online by Cambridge University Press:  12 January 2012

T. Yoda
Affiliation:
Department of Information and Electronics, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan.
K. Kinoshita
Affiliation:
Department of Information and Electronics, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan. Tottori University Electronic Display Research Center, 522-2 Koyama-Kita, Tottori 680-0941, Japan.
T. Fukuhara
Affiliation:
Department of Information and Electronics, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan.
S. Kishida
Affiliation:
Department of Information and Electronics, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan. Tottori University Electronic Display Research Center, 522-2 Koyama-Kita, Tottori 680-0941, Japan.
N. Sawai
Affiliation:
Fujitsu Laboratory, 10-1 Morinosatowakamiya, Atsugi 243-0197, Japan.
K. Honda
Affiliation:
Tohoku University, 2-1-1 Aoba, Katahira, Sendai 980-8577, Japan.
Get access

Abstract

In our previous work, low resistance state (LRS) and high resistance state (HRS) areas on a nickel-oxide (NiO) film formed by applying a voltage using conductive atomic-force microscopy (C-AFM) was observed by scanning electron microscope (SEM). Comparing the observed secondary electron image (SEI) contrast to the report about the dopant-type dependence of SEI contrast reported on silicon, it was suggested that the LRS and HRS areas are, respectively, electrochemically induced p-type Ni1-xO (x > 0) and intrinsic (stoichiometric) or ntype Ni1-xO (x ≤ 0). In this paper, we verified that resistance change caused by C-AFM is due to electrochemically induced carrier injection. Reduction effect of H2 annealing on the writing area, voltage dependence of depletion layer capacitance formed between the writing area and AFM-tip using scanning nonlinear dielectric microscopy (SNDM), and the effect of Schottky barrier formation between the writing area and thin metal layer on SEI contrast were investigated. Based on these results, it was clarified that the LRS and HRS areas are, respectively, p-type Ni1-xO (x > 0) and intrinsic (stoichiometric) or n-type Ni1-xO (x ≤ 0)

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baek, I. G., Kim, D. C., Lee, M. J., Kim, H. J., Lee, M. S., Lee, J. E., Ahn, S. E., Seo, S., Lee, J. H., Park, J. C., Cha, Y. K., Park, S. O., Kim, H. S., Yoo, I. K., Chung, U-In, Moon, J. T. and Ryu, B. I.: Tech. Dig. Int. Electron Devices Meet., 2005, p.769.Google Scholar
2. Hosoi, Y., Tamai, Y., Ohnishi, T., Ishihara, K., Shibuya, T., Inoue, Y., Yamazaki, S., Nakano, T., Ohnishi, S., Awaya, N., Inoue, I. H., Shima, H., Akinaga, H., Takagi, H., Akoh, H., and Tokura, Y.: Tech. Dig. Int. Electron Devices Meet., 2006, p.793.Google Scholar
3. Tsunoda, K., Kinoshita, K., Noshiro, H., Yamazaki, Y., Iizuka, T., Ito, Y., Takahashi, A., Okano, A., Sato, Y., Fukano, T., Aoki, M., and Sugiyama, Y.: Tech. Dig. Int. Electron Devices Meet., 2007, p.767.Google Scholar
4. Greene, P.D., Bush, E.L., and Rawlings, I.R., Proc. Symp. on Deposited Thin Film Dielectric Materials, edited by Vratny, F. (The Electrochemical Society, New York, 1969), pp. 167185 Google Scholar
5. Kawai, M., Ito, K., Ichikawa, N., and Shimakawa, Y., Appl. Phys. Lett. 96, 072106 (2010).Google Scholar
6. Fujiwara, K., Nemoto, T., Rozenberg, M. J., Nakamura, Y. and Takagi, H.: Jpn. J. Appl. Phys., 47 (2008) 6266.Google Scholar
7. Shima, H., Takano, F., Muramatsu, H., Yamazaki, M. and Akinaga, H., Kogure, A.: Phys. Status Solidi, 2 (2008) 99.Google Scholar
8. Kinoshita, K., Tamura, T., Aoki, M., Sugiyama, Y. and Tanaka, H.: Appl. Phys. Lett., 89 (2006) 103509.Google Scholar
9. Kinoshita, K., Yoda, T. and Kishida, S.: J. Appl. Phys., 110 (2011) 064503.Google Scholar
10. Kazemian, P., Mentink, S. A. M., Rodenburg, C. and Humphreys, C. J.: J. Appl. Phys., 100 (2006) 054901.Google Scholar
11. El-Gomati, M., Zaggout, F., Jayacody, H., Tear, S. and Wilson, K.: Surf. Interface Anal., 37 (2005) 901 Google Scholar
12. Seo, S., Lee, M. J., Seo, D. H., Jeoung, E. J., Suh, D.-S., Joung, Y. S., Yoo, I. K., Hwang, I. R., Kim, S. H., Byun, I. S., Kim, J.-S., Choi, J. S., and Park, B. H.: Appl. Phys. Lett. 85, 5655 (2004).Google Scholar
13. Terakura, K., Williams, A. R., Oguchi, T., and Kubler, J.: Phys. Rev. Lett. 52, 1830 (1984).Google Scholar
14. Tsuda, N., Nasu, K., Fujimori, A., and Shiratori, K., Electronic Conduction in Oxides (Springer, New York, 2000), p. 213 Google Scholar
15. Adler, D. and Feinleib, J.: Phys. Rev. B 2, 3112 (1970).Google Scholar
16. Yoshida, C., Kinoshita, K., Yamasaki, T., and Sugiyama, Y.: Appl. Phys. Lett. 93, 042106 (2008).Google Scholar
17. Cho, Y., Fujimoto, K., Hiranaga, Y., Wagatsuma, Y., Onoe, A., Terabe, K. and Kitamura, K.: Appl. Phys. Lett., 81 (2002) 4401.Google Scholar
18. Honda, K., hashimoto, S., and Cho, Y.: Appl. Phys. Lett., 86, (2005) 063515 Google Scholar
19. Greiner, Mark T., Helander, Michael G., Wang, Zhi-Bin, Tang, Wing-Man, and LuS, Zheng-Hong: J. Phys. Chem. C., 114, (2010) 1977 Google Scholar