Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T07:41:27.379Z Has data issue: false hasContentIssue false

Residual Donors in P-SiC Films

Published online by Cambridge University Press:  25 February 2011

W. E. Carlos
Affiliation:
Naval Research Laboratory, Washington, DC.
W. J. Moorea
Affiliation:
Naval Research Laboratory, Washington, DC.
P. G. Siebenmann
Affiliation:
Naval Research Laboratory, Washington, DC.
J. A. Freitas Jr.
Affiliation:
Sachs/Freeman Associates, Landover, MD.
R. Kaplan
Affiliation:
Naval Research Laboratory, Washington, DC.
S. G. Bishop
Affiliation:
Naval Research Laboratory, Washington, DC.
P. E. R. Nordquist Jr.
Affiliation:
Naval Research Laboratory, Washington, DC.
M. Kong
Affiliation:
North Carolina State University, Raleigh, NC.
R. F. Davis
Affiliation:
North Carolina State University, Raleigh, NC.
Get access

Abstract

Electron Spin Resonance (ESR), temperature dependent Hall effect measurements and photoluminesence (PL) are used to examine the assumption that the residual donor in β-SiC films is nitrogen. At low temperatures the ESR has a three line isotropic spectrum which is characteristic of a central hyperfine interaction with nitrogen. The temperature dependence of the intensity of the nitrogen ESR signal correlates with the concentration of un-ionized donors measured by the Hall effect. Donor-Acceptor pair PL spectra are used to establish that the binding energy of the dominant donor in the films is the same as the nitrogen donor observed in Lely-grown samples. Neither PL nor ESR provide any evidence for the presence of a shallower donor.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Choyke, W.J., Hamilton, D.R. and Patrick, L., Phys. Rev. 133, A1163 (1964)/Google Scholar
2. Suzuki, A., Uemoto, A., Shigeta, M., Furukawa, K. and Nakajima, S., Appl. Phys. Lett. 49, 450 (1986) and 50,1534 (1987);Google Scholar
3. Segall, B., Alterovitz, S.A., Haugland, E.J. and Matus, L.G., Appl. Phys. Lett. 49, 584 (1986) and 50, 1533 (1987).Google Scholar
4. Woodbury, H.H. and Ludwig, G.W., Phys. Rev. 124, 1083 (1961).Google Scholar
5. Altaiskii, Yu.M., Zaritskii, I.M., Zevin, V.Ya. and Konchits, A.A., Soviet Physics - Solid State 12, 2453 (1971).Google Scholar
6. Freitas, J.A. Jr., Bishop, S.G., Edmond, J.A., Ryu, J. and Davis, R.F., J. Appl. Phys. 61 2011 (1987).Google Scholar
7. Fatemi, M. and Nordquist, P.E.R., J. Appl. Phys. 61, 1883 (1987).Google Scholar
8. Liaw, P. and Davis, R.F., J. Electrochem. Soc. Solid-State Sci. Technol. 132, 3 (1985); 132, 642 (1985).Google Scholar
9. Fehr, G., Phys. Rev. 114, 1219 (1959).Google Scholar
10. Lepine, D.J., Phys. Rev. B 2, 2429 (1970).Google Scholar
11. Iida, T., J. Phys. Chem. Solids 33, 1423 (1972).Google Scholar
12. Dean, P.J., Choyke, W.J. and Patrick, L., J. Lumin. 15, 299 (1977).Google Scholar
13. Choyke, W.J. and Patrick, L., Phys. Rev. B 2, 4959 (1970).Google Scholar
14. Debye, P.P. and Conwell, E.M., Phys. Rev. 93, 693 (1954).Google Scholar
15. Eddolls, D.V., Phys. Status Solidi 17,67 (1966).Google Scholar
16. Pearson, G.L. and Bardeen, J., Phys. Rev. 75, 865 (1949).Google Scholar