Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T15:34:42.426Z Has data issue: false hasContentIssue false

Reparation and Characterization of BST Thin Films with Hybrid Bottom Electrodes

Published online by Cambridge University Press:  10 February 2011

Joon-Hyung Ahn
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Kusong-dong, Yusong-gu, Taejon, 305-701, Korea
Jeong-Ho Park
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Kusong-dong, Yusong-gu, Taejon, 305-701, Korea
Won-Jae Lee
Affiliation:
Semiconductor Technology Division, Electronics and Telecommunications Research Institute, 161 Kajong-dong, Yusong-gu, Taejon, 305-350, Korea
Ho-Gi Kim
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Kusong-dong, Yusong-gu, Taejon, 305-701, Korea
Get access

Abstract

Thin platinum layer was used for the modification of the interface state between (Ba,Sr)TiO3 (BST) thin films and RuO2 bottom electrodes. Pt/RuO2 hybrid bottom electrodes were fabricated with various platinum deposition temperatures by a conventional dc magnetron sputtering method. Although the surface morphology and XRD patterns of BST thin films were not changed, the electrical properties of BST films deposited on Pt/RuO2 hybrid electrodes were improved compared to the films on RuO2 electrodes. Dielectric constant (εr) and leakage current density of BST thin films on Pt/RuO2 hybrid electrodes prepared at the platinum deposition temperature of 400°C were 498 and 8.6 × 10−8 A/cm2 at 1.5V, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERNCES

1. Nishioka, Y. et al., Dig. Int. Electron Devices Meeting, Washington D.C., 1995 (IEEE, New York, 1995) p. 903.Google Scholar
2. Yamamichi, S. et al., Dig. Int. Electron Devices Meeting, Washington D.C., 1995 (IEEE, New York, 1995) p. 119.Google Scholar
3. Lee, K.P. et al., Dig. Int. Electron Devices Meeting, Washington D.C., 1995 (IEEE, New York, 1995) p. 907.Google Scholar
4. Lesaicherre, P-Y. et al., Dig. Int. Electron Devices Meeting, San Francisco, 1994 (IEEE, New York, 1994) p. 831.Google Scholar
5. Lee, J.S., Kwon, H.J., Jeong, Y. W., Kim, H.H., Park, K.H., and Kim, C.Y., Ferroelectric Thin Films V (MRS, Pennsylvania, 1996) p. 175.Google Scholar
6. Kawahara, T., Yamamuka, M., Yuuki, A. and Ono, K., Jpn. J. Appl. Phys. 35 4880 (1996).Google Scholar
7. Al-Shareef, H.N., Bellur, K.R., Auciello, O. and Kingon, A.I., Thin Solid Films 256 73 (1995).Google Scholar
8. Takemura, K., Sakuma, T. and Miyasaka, Y., Appl. Phys. Lett. 64 2967 (1994).Google Scholar
9. Al-Shareef, H.N., Bellur, K.R., Auciello, O. and Kingon, A.I., Thin Solid Films 256 73 (1994).Google Scholar
10. Al-Shareef, H.N., Bellur, K.R., Auciello, O. and Kingon, A.I., J. Appl. Phys. 77 2146 (1995).Google Scholar
11. Lee, W.J., Park, I.K., Jang, G.E. and Kim, H.G., Jpn. J. Appl. Phys. 34 196 (1995).Google Scholar
12. Ahn, J.H., Choi, W.Y., Lee, W.J. and Kim, H.G., Jpn. J. Appl. Phys. 37 (1998) in press.Google Scholar
13. Fukuda, Y., Aoki, K., Numata, K. and Nishimura, A., Jpn. J. Appl. Phys. 33 5255 (1994).Google Scholar