Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T17:58:57.620Z Has data issue: false hasContentIssue false

Removal of Plasma-Etch-Induced Polymers from Submicron Via Holes by Excimer Laser Ablation

Published online by Cambridge University Press:  15 February 2011

Y. F. Lu
Affiliation:
Department of Electrical Engineering and Data Storage Institute, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260.
Y. P. Lee
Affiliation:
Department of Electrical Engineering and Data Storage Institute, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260.
M. S. Zhou
Affiliation:
Chartered Semiconductor Manufacturing Ltd., 60 Woodlands Ind. Park D, Street 2, Singapore 738406.
Get access

Abstract

A relatively new approach in removing the sidewall and bottom polymers resulting from reactive ion etching of via holes, using a non-contact dry excimer laser cleaning technique has been investigated. Pulsed excimer laser ablation at 248 nm has been found to be capable of removing the via-etch-induced polymers at fluences limited by the damage threshold of the underlying Al-Cu metal film with TiN anti-reflective coating of 250-280 mJ cm-2. A fluence window of 150-200 mJ cm-2 for efficient laser cleaning is also determined from the ablation rate data using the relation in the limit of Beer's law absorption. Experimental results have also shown that the ablation rate when irradiating at an angle is not only comparable to that at vertical incidence, but even register higher values for most of the ablation rate data obtained. An optimum incident angle for laser cleaning of 45° can be determined from the results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shi, M. K., Lamontagne, B., Selmani, A., and Martinu, L., J. Vac. Sci. Technol. A 12 (1), 44 (1994).Google Scholar
2. John, P. J. and Liang, J., J. Vac. Sci. Technol. A 12 (1), 199 (1994).Google Scholar
3. Zapka, W., Ziemlich, W., Leung, W. P., and Tam, A. C., Microelectronic Engineering 20, 171 (1993).Google Scholar
4. Magee, T. J. and Leung, C. S., Particles on Surfaces, Plenium Press, New York, 1991, Vol. 3, pp. 307.Google Scholar
5. Lu, Y. F., Komuro, S., and Aoyagi, Y., Jpn. J. Appl. Phys. 33, 4691 (1994).Google Scholar
6. Lu, Y. F., Aoyagi, Y., Takai, M., and Namba, S., Jpn. J. Appl. Phys. 33, 7138 (1994).Google Scholar
7. Engelsberg, A. C., Removal of surface contamination using dry, laser-assisted process, Paper given at Microcontamination 93, San Jose, CA, USA, 23 September 1993.Google Scholar
8. Mann, K., Wolff-Rottke, B., and Müller, F., SPIE Proc. of Boulder Damage Symp., Boulder, CO, USA, October 1994.Google Scholar
9. Palik, E. D., Handbook of Optical Constants of Solids, Academic Press, Orlando, 1985, pp. 397, 759.Google Scholar
10. Srinivasan, R., Appl. Phys. A 56, 417 (1993).Google Scholar
11. Blanchet, G. B. and Shah, S. I., Appl. Phys. Lett. 62, 1026 (1993); G. B. Blanchet, Appl. Phys. Lett. 62, 479 (1993).Google Scholar
12. Blanchet, G. B., Fincher, C. R. Jr., Jackson, C. L., Shah, S. I., and Gardner, K. H., Science 262, 719 (1993).Google Scholar
13. Kuiper, S. and Stuke, M., Appl. Phys. Lett. 54, 4 (1988).Google Scholar
14. Fujiwara, H., Nakajima, Y., Fukumura, H., and Masuhara, H., J. Phys. Chem. 99, 11481 (1995).Google Scholar
15. Fujiwara, H., Fukumura, H., and Masuhara, H., J. Phys. Chem. 99, 11844 (1995).Google Scholar
16. Tsunekawa, M., Nishio, S., and Sato, H., Jpn. J. Appl. Phys. 34, 218 (1995).Google Scholar
17. Cain, S. R., Bums, F. C., and Otis, C. E., J. Appl. Phys. 71, 4107 (1992).Google Scholar
18. Cain, S. R., Burns, F. C., Otis, C. E., and Braren, B., J. Appl. Phys. 72, 5172 (1992).Google Scholar
19. Jellinek, H. H. and Srinivasan, R., J. Phys. Chem., 88, 3048 (1984).Google Scholar