Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T17:48:02.670Z Has data issue: false hasContentIssue false

Relaxation of Metamorphic III-V Heterostructures Studied by Digital Processing of HREM Images

Published online by Cambridge University Press:  10 February 2011

André Rocher
Affiliation:
Centre d'Elaboration des Matériaux et d'Etudes Structurales, CEMES/CNRS BP 4347, F-31055 Toulouse cedex 4, France
Etienne Snoeck
Affiliation:
Centre d'Elaboration des Matériaux et d'Etudes Structurales, CEMES/CNRS BP 4347, F-31055 Toulouse cedex 4, France
Léon Goldstein
Affiliation:
Alcaltel Alsthom Recherche, route de Nozay, F-91460 Marcoussis, France
Joël Jacquet
Affiliation:
Alcaltel Alsthom Recherche, route de Nozay, F-91460 Marcoussis, France
Catherine Fortin
Affiliation:
Alcaltel Alsthom Recherche, route de Nozay, F-91460 Marcoussis, France
Get access

Abstract

The crystalline structure of metamorphic heterostructures grown by epitaxy has been studied by digital processing of High Resolution Electron Microscopy (HREM) images. Two systems have been investigated: the GaSb/(001)GaAs, known to be fully relaxed by a perfect Lomer dislocation network and the GaAs/(001)InP relaxed by partial and 60° dislocations randomly distributed. A transition zone can be defined between the perfect substrate and the relaxed epitaxial layer: its thickness is less than 20Å in GaSb/GaAs and more than 80Å in GaAs/InP. These results indicate that the misfit dislocations are only one of the elements involved in the relaxation of misfit stress.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rocher, I. A. and Kang, J. M., Inst. Phys. Conf. Ser.146, p. 135, (1995)Google Scholar
2. Patriarche, G., Jeannès, F., Oudar, J. L. and Glas, F., Inst. Phys. Conf. Ser. n° 157, p. 103, (1997)Google Scholar
3. Hÿtch, M. J., Scanning Microscopy Suppl. 11, Signal and Image Processing in Microscopy and Microanalysis, (Ed P. Hawkes), (1997)Google Scholar
4. Snoeck, E., Warot, B., Ardhuin, H., Rocher, A., Casanove, M. J., Kilaas, R. and Hytch, M. J., to be published in Thin Solid Films, (1998)Google Scholar
5. Raisin, C., Saguintaah, B., Tetegmousse, H., Lassabatère, L., Girault, B. and Allibert, C., Ann.Telecommun. 41, 50, (1986)Google Scholar
6. Goldstein, L., Fortin, C., Starck, C., Plais, A., Jacquet, J., Boucart, J., Rocher, A. and Poussou, C. Electron. Lett. 34, (3), p268270, (1998)10.1049/el:19980117Google Scholar
7. Rocher, A. and Snoeck, E. to be published in Thin Solid Films, (1998).Google Scholar
8. Transmission Electron Microscopy, Williams, D. B. and Carter, C. B., Plenum, (1996).Google Scholar
9. Rocher, A., Kang, J. M., Atmani, H., Crestou, J., Vanderschaeve, G., Lassabatère, L. and Bonnet, R., Inst. Phys. Conf. Ser. n° 117, p. 509, (1991)Google Scholar