Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T02:26:29.076Z Has data issue: false hasContentIssue false

Relationship of Processing Conditions to Growth Rate and Quality of Diamond Grown by Chemical Vapor Deposition

Published online by Cambridge University Press:  15 February 2011

John C. Angus
Affiliation:
Chemical Engineering Department, Case Western Reserve University, Cleveland, OH 44016-7217
William D. Cassidy
Affiliation:
Chemical Engineering Department, Case Western Reserve University, Cleveland, OH 44016-7217
Long Wang
Affiliation:
Chemical Engineering Department, Case Western Reserve University, Cleveland, OH 44016-7217
Yaxin Wang
Affiliation:
Chemical Engineering Department, Case Western Reserve University, Cleveland, OH 44016-7217
Edward Evans
Affiliation:
Chemical Engineering Department, Case Western Reserve University, Cleveland, OH 44016-7217
Christopher S. Kovach
Affiliation:
Chemical Engineering Department, Case Western Reserve University, Cleveland, OH 44016-7217
Michael A. Tamor
Affiliation:
Research Laboratories, Ford Motor Company, Dearborn, MI 48121-4053
Get access

Abstract

Diamond quality is strongly coupled to growth rate. Incorporation of nondiamond (sp2) carbon and morphological instabilities both increase with increasing growth rates. The intersection of twins with the growth surface produces re-entrant corners that enhance growth in the plane of the twin. Morphology and the development of texture both depend on substrate temperature and methane concentration and hence on growth rate. Experimental evidence and modeling results that relate growth rates and quality to controllable process parameters are reviewed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Goodwin, D.G., J. Appl. Phys. 74, 6888 (1993).Google Scholar
2. Angus, J.C. and Evans, E.A., Mat. Res. Soc. Symp. Proc. Vol.349, Materials Res. Soc., Pittsburgh, PA, pp. 385390 (1994).Google Scholar
3. Angus, J.C., Sunkara, M., Sahaida, S. and Glass, J.T., J. Mater. Res. 7, 3001 (1992).Google Scholar
4. Clausing, R.E., Heatherly, L., Horton, L.L., Specht, E.D., Begun, G.M. and Wang, Z.L., Diamond and Related Materials 1, 411 (1992).Google Scholar
5. Everson, M.P. and Tamor, M.A., J. Mater. Res. 7, 1438 (1992).Google Scholar
6. Tamor, M.A. and Everson, M.P., J. Mater. Res. 9, 1839 (1994).Google Scholar
7. Wild, C., Kohl, R., Herres, N., Muller-Sebert, W. and Koidl, P., Diamond and Related Materials 3, 373 (1994).Google Scholar
8. Ravi, K.V., J. Mater. Res. 7, 384 (1992).Google Scholar
9. Kovach, C.S., Roozbehani, B., Suzuki, T. and Angus, J.C., Proc. 2nd Int. Conf. on the Applications of Diamond Films and Related Materials, Yoshikawa, M., Murakawa, M., Tzeng, Y. and Yarbrough, W.A., Eds., MYU Tokyo, 1993.Google Scholar
10. Wang, Y., Evans, E.A., Kovach, C.S., Landau, U., and Angus, J.C., Mat. Res. Soc. Symp. Proc. Vol.363, Gallois, B.M., Lee, W.Y. and Pickering, M.A., Eds., Materials Res. Soc., Pittsburgh, PA, pp. 127138 (1995).Google Scholar
11. Angus, J.C., Buck, F. A., Sunkara, M., Groth, T.F., Hayman, C.C. and Gat, R., Materials Res. Soc. Bull. XIV(10), 38 (1989)Google Scholar
12. Yu, B.W. and Girshick, S.L., J. Appl. Phys. 75, 3914 (1994).Google Scholar
13. Chauhan, S.P., Angus, J.C. and Gardner, N.C., J. Appl. Phys. 47, 4746 (1976)Google Scholar
14. Fedoseev, D.V. and Deryagin, B.V., Zh. Fiz. Khimii. 53, 752 (1979)Google Scholar
15. Harris, S.J. and Weiner, A.M., J. Appl. Phys. 70, 1385 (1991)Google Scholar
16. Chu, C.J., D'Evelyn, M.P., Hauge, R-H. and Margrave, J.L., J. Appl. Phys. 70, 1695 (1991).Google Scholar
17. Snail, K.A. and Marks, C.M., Appl. Phys. Lett. 60, 3135 (1992).Google Scholar
18. Stoner, B.R., Williams, B.E., Wolter, S.D., Nishimura, K. and Glass, J.T., J. Mat. Res. 7, 257 (1992).Google Scholar
19. Kobashi, K., Nishimura, K., Kowate, Y. and Horiuchi, T., Phys. Rev. B38, 4067 (1988)Google Scholar
20. Wang, Y. and Angus, J.C., Proc. 3rd Symposium on Diamond Materials, Proc. Vol. 93–17. Electrochemical Society. Pennington. NJ (1993), pp. 249–255.Google Scholar
21. Wang, Y., Evans, E.A., Zeatoun, L. and Angus, J.C., Proc. Third IUMRS Int. Conf. on Adv. Materials, Wakatsuki, M. et al., Eds., Nikkam Kogyo Shimbum, Ltd., Tokyo (1993).Google Scholar
22. Windischmann, H., personal communication.Google Scholar
23. Cassidy, W.D., M.S. Thesis, Case Western Reserve University, Cleveland, OH, 1995.Google Scholar
24. Cassidy, W.D., Morrison, P.W. Jr, and Angus, J.C., Proc. 4th Int. Symp. on Diamond Materials, Reno, NV, May 21–26, 1995; Electrochemical Society, Pennington, NJ.Google Scholar
25. Davidson, B.N. and Pickett, W., Phys. Rev. B 49, 14770 (1994).Google Scholar
26. Jungnickel, G., Porezag, D., Frauenheim, Th., Lambrecht, W.R.L., Segall, B. and Angus, J.C., MRS Symposium I, Novel Forms of Carbon, San Francisco, CA, April, 1995 (This volume).Google Scholar
27. van der Drift, A., Philips Res. Rep. 22, 267 (1967).Google Scholar
28. Jiang, X., Klages, C.P., Zachai, R., Hartweg, M. and Fusser, J.J., Appl. Phys. Lett. 62, 3438 (1993).Google Scholar
29. Wolter, S.D., Stoner, B.R., Glass, J.T., Ellis, P.J., Buhaenko, D.S., Jenkins, C.E. and Southworth, P., Appl. Phys. Lett. 62, 1215 (1993).Google Scholar
30. Everson, M.P., and Tamor, M.A., J. Vac. Sci. Tech. 139, 1570 May/June 1991.Google Scholar
31. Schectmann, D., Hutchison, J.L., Robins, L.H., Farabaugh, E. and Feldman, A., J. Mater. Res. 8, 473 (1993)Google Scholar