Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T08:15:20.027Z Has data issue: false hasContentIssue false

The Relationship Between Surface Chemistry and Photoluminescence of Porous Silicon

Published online by Cambridge University Press:  25 February 2011

Kun-Hsi Li
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering
Chaochieh Tsai
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering
Joe C. Campbell
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering
Milan Kovar
Affiliation:
Department of Chemistry and BiochemistryThe University of Texas at Austin, Austin, TX 78712
John M White
Affiliation:
Department of Chemistry and BiochemistryThe University of Texas at Austin, Austin, TX 78712
Get access

Abstract

Green photoluminescence (PL) is observed from an as-anodized porous Si wafer immersed in the anodization electrolyte and the PL turns red after the sample is removed from the electrolyte and is blown dry. The PL of porous Si immersed in alcohol exhibits a blue shift and a marked decrease in intensity relatively to dry, as-anodized wafers. However, when the immersed samples are treated with UV for a few minutes, the PL peak shifts to a longer wavelength. Fourier-transform infrared spectroscopy reveals that alkoxy surface species and silicon hydride species backbonded to oxygen atoms appear on the UV-treated samples. Furthermore, the PL characteristics and surface species of the UV-treated samples can be recovered to those of as-anodized wafers by dipping in HF. These results point out the importance of surface chemistry in the luminescence process of porous Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Canham, L. T., Appl. Phys. Lett. 57, 1047 (1990).CrossRefGoogle Scholar
2 Cullis, A. G. and Canham, L. T., Nature, 353, 335 (1991).Google Scholar
3 Cole, M. W., Harvey, J. F., Lux, R. A., Eckart, D. W., and Tsu, R., Appl. Phys. Lett. 60, 2800 (1992).CrossRefGoogle Scholar
4 Tsu, R., Shen, H., and Dutta, M., Appl. Phys. Lett. 60,112 (1992).CrossRefGoogle Scholar
5 Sui, Z., Leong, P. P., Herman, I. P., Higashi, G. S., and Temkin, H., Appl. Phys. Lett. 60, 2086 (1992).Google Scholar
6 Bensaid, A., Patrad, G., Brunel, M., Bergevin, F. de, and Herino, R., Solid State Comm. 79, 923 (1991).Google Scholar
7 George, T., Anderson, M. S., Pike, W. T., Lin, T. L., Fathauer, R. W., Jung, K. H., and Kwong, D. L., Appl. Phys. Lett. 60, 2359 (1992).Google Scholar
8 Perez, J. M., Vilalobos, J., McNeill, P., Prasad, J., Cheek, R., Kelber, J., Estrera, I. P., Stevens, P. D., and Glosser, R., Appl. Phys. Lett. 61, 563 (1992).CrossRefGoogle Scholar
9 Prokes, S. M., Carlos, W. E., and Bermudez, V. M., Appl. Phys. Lett. 61, 1447 (1992).CrossRefGoogle Scholar
10 Fuchs, H. D., Brandt, M. S., Stutzmann, M., and Weber, J., Mat. Res. Soc. Symp. Proc. 256, 159 (1992).Google Scholar
11 Muschik, T., Petrova-Koch, V., Kux, A., and Koch, F., Mat. Res. Soc. Fall, 1992.Google Scholar
12 Miyoshi, T., Lee, K.-S., and Aoyagi, Y., Jpn. J. Appl. Phys. 31, Pt. 1, 2470 (1992).Google Scholar
13 Tsai, C., Li, K.-H., Sarathy, J., Shih, S., Campbell, J. C., Hance, B. K., and White, J. M., Appl. Phys. Lett. 59, 2814 (1991).CrossRefGoogle Scholar
14 Vial, j. C., Bsiesy, A., Gaspard, F., Herino, R., Ligeon, M., Muller, F., Romestain, R., and Macfariane, R. M., Phys. Rev. B45, 14171 (1992).CrossRefGoogle Scholar
15 Petrova-Koch, V., Muschik, T., Kux, A., Meyer, B. K., Koch, F., and Lehmann, V., Appl. Phys. Lett. 61, 943 (1992).Google Scholar
16 Fenner, D. B., Biegelsen, D. K., and Bringans, R. D., J. Appl. Phys. 66, 419 (1989).Google Scholar
17 Lauerhaas, j. M., Credo, G. M., Heinrich, J. L., and Sailor, M. J., J. Am. Chem. Soc. 114, 1911 (1992).Google Scholar
18 Chazalviel, J. N., J. Electroanal. Chem. 233, 37 (1987).Google Scholar
19 Tsai, C., Li, K.-H., Campbell, J. C., Hance, B. K., White, J. Mf., J. of Elect. Mat. 21, 589 (1992).Google Scholar
20 Bermudez, V. M., J. Appl. Phys. 71, 5450 (1992).Google Scholar