Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:11:27.808Z Has data issue: false hasContentIssue false

Relationship Between Stress and Surface Roughness in Krypton Implanted MgO

Published online by Cambridge University Press:  21 February 2011

Laurence Gea
Affiliation:
Departement de Physique des Materiaux (URA CNRS 172), Universite Claude Bernard, LYON-I(France),
Jean-Luc Loubet
Affiliation:
Ecole Centrale de Lyon (URA CNRS 855), Ecully (France)
Roger Brenier
Affiliation:
Departement de Physique des Materiaux (URA CNRS 172), Universite Claude Bernard, LYON-I(France),
Paul Thevenard
Affiliation:
Departement de Physique des Materiaux (URA CNRS 172), Universite Claude Bernard, LYON-I(France),
Get access

Abstract

(001) MgO single crystals were implanted with 150 keV krypton ions (Kr+) at a fluence of 5.1016 ions.cm-2 . The implanted surface, observed with an Atomic Force Microscope (AFM) exhibits striking features that can be described as undulations with a wavelength of 0.5 [μm. We correlate these features to the decrease in density and the stresses induced by the implantation damage. As a matter of fact, a model of surface instabilities provides a relationship between the wavelength of the ondulations and internal stresses. Using this model, implantation stresses are calculated to 2.2 GPa. This is in good agreement with the value of 2 GPa obtained with the help of the microindentation technique and the literature data. Some effects of an ionizing post-irradiation on stress and surface roughness are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Grinfeld, M. A., Dokl. Akad. Nauk SSSR 290, 13581363 (1986) [Sov. Phys. Dokl. 31(10), 831 (1986)].Google Scholar
[2] Srolovitz, D.J., Acta Metall. 37 (2), 621625 (1989).Google Scholar
[3] Nozieres, P., J. Phys. France 3, 681 (1993)Google Scholar
[4] Grilhe, J., Acta Met. 41, 909 (1993)Google Scholar
[5] see for instance LeGoues, F. K., Copel, M., Tramp, R.M., Phys. Rev. B42, 11 690 (1990)Google Scholar
[6] Bodensohn, J., Nicolai, K., Leiderer, P., Z. Phys. B, 64, 5564 (1986).Google Scholar
[7] Balibar, S., Edwards, D.O., Saam, W.F., J. Low Temp. Phys. 12, 119 (1991).Google Scholar
[8] Torii, R.H., Balibar, S., J. Low Temp. Phys. 89, 391400 (1992).Google Scholar
[9] Berrehar, J., Caroli, C., Lapersonne-Meyer, C., Schotl, M., Phys. Rev. B46, 13487 (1992).Google Scholar
[10] Villechaise, P., Thesis, Poitiers University, France (1991) and to be published.Google Scholar
[11] Primak, W., Luthra, J., Phys. Rev. 150 (1966) 551.Google Scholar
[12] Norton, M. G., Carter, C. B., Fleischer, E.L., Mayer, J. W., J. Mat. Res. 7, 3171 (1992)Google Scholar
[13] Evans, B. D., Comas, J., Malmberg, P.R., Phys. Rev. 6, 2453 (1972).Google Scholar
[14] Ziegler, J.F., Biersack, J.P., Littmark, U., The slopping and ranges of ions in solids, (Pergamon, New York, 1980).Google Scholar
[15] Gea, L., PhD Thesis, Lyon University, France (1993)Google Scholar
[16] Lawn, B.R., Fuller, E.R., J. Mat. Sc 19, 4061 (1984)Google Scholar
[17] White, C.W., McHargue, C.J., Sklad, P.S., Boatner, L.A., Farlow, G.C., Mat. Sc. Rep. 4, p.123 (1989)Google Scholar
[18] Brenier, R., Canut, B., Gea, L., Ramos, S.M.M., Thevenard, P., Nucl. Inst. Meth. Phys. Res. B80/81, 1210 (1993).Google Scholar
[19] Volkert, C.A., Polman, A., MRS Symp. Proc. 235, 3 (1992)Google Scholar
[20] Primak, W., J. Appl. Phys. 35, 1342 (1964)Google Scholar
[21] Volkert, C.A., J.Appl. Phys. 70, 3521 (1991)Google Scholar
[22] Asaro, R. J., Tiller, W.A., Metall. Trans. 3, 1789 (1972)Google Scholar
[23] Louat, N., Nature 196, 1081 (1962)Google Scholar
[24] Saada, G., Dislocation modelling of physical systems, (edited by Ashby, M. et al), Pergamon Press, Oxford(1980) p 310.Google Scholar
[25] Marcinkowski, M.J., Das, E.S.P, Int. J. Fracture 10, 81 (1974)Google Scholar
[26] Jagannadham, K., Marcinkowski, M. J., Phys. Stat. Sol. (a) 50, 293 (1978).Google Scholar
[27] Krefft, G.B., J. Vac. Sci. Technol. 14, 533 (1977)Google Scholar
[28] Boatner, L.A., Rankin, J., Romana, L. J., Thevenard, P., Gilmore, D.J., Spring Meeting of the MRS, April 1992 Google Scholar
[29] Burnett, P. J., Page, T.F., J. Mat. Sc.20, 4624 (1985)Google Scholar
[30] Gea, L.A., Thevenard, P., Brenier, R., Canut, B., Ramos, S.M.M., Beranger, M., to be publishedGoogle Scholar