Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T08:57:14.077Z Has data issue: false hasContentIssue false

Relationship Between Crystal Structure and Li+-Conductivity in La0.5 Li0.5TiO3 Perovskite

Published online by Cambridge University Press:  10 February 2011

J. A. Alonso
Affiliation:
Inst. Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain
J. Ibarra
Affiliation:
Inst. Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain
M. A. Paris
Affiliation:
Inst. Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain
J. Sanz
Affiliation:
Inst. Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain
J. Santamaria
Affiliation:
F. C. Fisicas, Univ. Compl. Madrid, E-28040 Madrid., Spain
C. LeÓn
Affiliation:
F. C. Fisicas, Univ. Compl. Madrid, E-28040 Madrid., Spain
A. Vdrez
Affiliation:
E.P.S., Univ. Carlos III, E-28911 Legands, Spain
M. T. Fermandez
Affiliation:
Inst. Laue-Langevin, BP 156. F-38045 Grenoble Cedex 9, France
Get access

Abstract

For the first time Li+ cations have been localized within the perovskite structure of the fast Liconductor La0 5Li0.5TiO3 from neutron powder diffraction data. Li cations are fourfold oxygen coordinated, located in the middle of the almost square windows determined by every four TiO6 octahedra, far away from the 12-fold coordinated La vacancy sites that, nevertheless, take part of the path for Li motion across the solid. The large multiplicity of the sites where Li reside (1/6 occupied) accounts for the huge ionic conductivity of this promising Li-conducting material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Inaguma, Y., Chen, L., Itoh, M., Nakamura, T., Uchida, T., Ikuta, M., and Wakihara, M., Solid State Commun. 86, 689(1993).Google Scholar
[2] Itoh, M., Inaguma, Y., Jung, W., Chen, L. and Nakamura, T., Solid State Ionics 70/71, 203 (1994).Google Scholar
[3] León, C., Lucíia, M. L., Santamaría, J., Paris, M. A., Sanz, J. and Várez, A., Phys. Rev. B 54 (1), 183, (1996).Google Scholar
[4] León, C., Lucia, M. L. and Santamaría, J., Phys. Rev. B 55(1), 882, (1997).Google Scholar
[5] León, C., Santamaría, J., Paris, M.A., Sanz, J., Ibarra, J., Várez, A., J. Non-Cryst. Solids 235237, 753 (1998)Google Scholar
[6] Rodríguez-Carvajal, J. J., FULLPROF program, version 3.1, ILL (unpublished).Google Scholar
[7] Werner, P.E., Eriksson, L. and Westdahl, M., J. Appl. Cry stallogr 16 1985,, 367.Google Scholar
[8] Glazer, A.M., Acta Cryst. B28 3384 (1972).Google Scholar
[9] García-Muñoz, J.L, Rodríguez-Carvajal, J., Lacorre, P. and Torrance, J.B,. Phys. Rev. B, 46, 4414(1992)Google Scholar
[10] González-Platas, J., J. Rodriguez-Carvajal, FOURIER and GFOURIER programs, unpublished.Google Scholar
[11] Skakle, J. M.S., Mather, G.C., Morales, M., Smith, R.I. and West, A.R., J. Mater. Chem. 5, 1807(1995).Google Scholar
[12] Oguni, M., Inagama, Y., Itoh, M. and Nakamura, T., Solid State Comnun. 91, 627(1994).Google Scholar
[13] Kawai, H. and Kuwano, K., J. Electrochem. Soc. 141, L78 (1994).Google Scholar
[14] Inaguma, Y., Chen, L., Itoh, M. and Nakamura, T., Solid State Ionics 70/71, 196 (1994).Google Scholar