Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T08:21:43.445Z Has data issue: false hasContentIssue false

Refractory Materials For High-Temperature Thermoelectric Energy Conversion

Published online by Cambridge University Press:  21 February 2011

Charles Wood
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
David Emin
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

Two refractory material systems show promise for efficient energy conversion at high temperatures (>1000 K): the rare-earth chalcogenides and the boron-rich borides. The electronic and thermal transport properties of these two systems are compared and discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Joffe, A.F., Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch Limited, London 1957).Google Scholar
2. Emin, D., Phys. Today 35, 34 (1982).Google Scholar
3. Flahaut, J.M. in: Handbook on the Physics and Chemistry of Rare Earths Gschneidner, K. A. and Eyring, L., eds. (North Holland, Amsterdam 1978) Chap. 31.Google Scholar
4. Besancon, P., J. Solid State Chem. 7, 232 (1973).CrossRefGoogle Scholar
5. Smirnov, I.A., Phys. Stat. Sol. (a) 14, 363 (1972).Google Scholar
6. Goldsmid, H.J. and Douglas, R.W., Brit. J. Appl. Phys. 5, 386 (1954).CrossRefGoogle Scholar
7. Zhuze, V.P., Sergeeva, V.M. and Golikova, O.A., Sov. Phys. Solid State 11, 2071 (1971);Google Scholar
7a 13, 6689 (1971).Google Scholar
8. Golikova, O.A. and Rudnik, I.M., Izv. Akad. Nauk, SSSR Neorg. Mater. 14, 17 (1978).Google Scholar
9. Luguev, S.M. and Smirnov, I.A., Sov. Phys. Solid State 19, 707 (1977).Google Scholar
10. Ryan, F.M., Greenberg, I.N., Carter, F.L. and Miller, R.C., J. Appl. Phys. 33, 864 (1962).Google Scholar
11. Cutler, N., Appel, J.C., Guthrie, G.L. and Kurnick, S.W., Final Report, Contract No.: BS-77144. ARPA Order No. 8159, August 31 (1962).Google Scholar
12. Taher, S.M. and Gruber, J.B., Mat. Res. Bull. 16, 1407 (1981).Google Scholar
13. Kamarzin, A.A., Mirnov, K.E., Sokolov, V.V., Malovitsky, Yu.N. and Vasilyera, I.G., J. Cryst. Growth 52, 619 (1981).Google Scholar
14. Emin, D. and Holstein, T., Ann. Phys. NY 53, 439 (1969).Google Scholar
15. Emin, D., Phys. Rev. Letters 35, 882 (1975).CrossRefGoogle Scholar
16. Emin, D. and Wood, C., Proc. 18th IECEC (Amer. Inst. Chem. Engrs.) Orlando, FL, August 1983, pp. 222.Google Scholar
17. Heikes, R.R. and Ure, R.W. in: Thermoelectricity: Science and Engineering (Interscience Publishers, New York 1961) pp. 339.Google Scholar
18. Matkovich, V.I. in: Boron and Refractory Borides (Springer-Verlag, New York 1971).Google Scholar
19. Lockwood, A., Wood, C., Reynolds, G.H. and Elsner, N., Electrochemical Society Meeting, Minneapolis, MI, May 10, 1981.Google Scholar
20. Taylor, R.E., private communication.Google Scholar
21. Golikova, O.A., Solovev, N.E., Ugai, Ya.A. and Feigelman, V.A., Sov. Phys. Semicond. 13, 486 (1979).Google Scholar
22. Pistourlet, B., Robert, J.L., Dusseau, J.M., Darolles, J.M., Armas, B. and Combescure, C., Proc. Internat. Solar Elctric Conf. Toulouse March 1–5 (1967), pp. 887.Google Scholar
23. Darolles, J.M., Lepetre, T. and Dusseau, J.M., Phys. Stat. Sol. (a) 58, K71 (1980).Google Scholar
24. Petrov, A.V., Germaidze, M.S., Golikova, O.A., Kiskachi, A. Yu. and Matreev, V.N., Sov. Phys. Solid State 11, 741 (1969).Google Scholar
25. Slack, G.A., Oliver, D.W. and Horn, F.H., Phys. Rev. 4, 1714 (1971).Google Scholar
26. Azevedo, L. and Venturini, E., private communication.Google Scholar
27. Geist, D., Meyer, J. and Peussner, H., Electron. Tech. 3, 207 (1970).Google Scholar