Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-02T16:39:55.026Z Has data issue: false hasContentIssue false

Reduction of Threading Dislocations in GaN grown on ‘c’ plane sapphire by MOVPE

Published online by Cambridge University Press:  01 February 2011

R. Datta
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, United Kingdom
M. J. Kappers
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, United Kingdom
J. S. Barnard
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, United Kingdom
C. J. Humphreys
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, United Kingdom
Get access

Abstract

The reduction of threading dislocations (TDs) in GaN is very important as TDs act as non-radiative recombination centres and generally reduce the luminescence efficiency of GaN-based optoelectronic devices, particularly UV emitting devices. In order to reduce the density of TDs, we have used an in-situ ELO technique by depositing a non-uniform SiNx mask (as revealed by STEM-EDX) using simultaneous flow of silane and ammonia gas, either on a sapphire substrate or on a GaN pseudo-substrate. The effect of several growth parameters, such as V/III ratio, duration of Si/N treatment, pressure and temperature, on the morphology, structural quality and reduction mechanisms of TDs in GaN have been investigated and the effects of the first two parameters are reported here. To start the epilayer growth with a low V/III ratio gives rise to predominantly 3D growth, forming islands with multiple inclined facets and a vanishing top (0001) facet. A high V/III ratio enhances the lateral growth, and islands with inclined {-2112} facets together with wide flat top (0001) facets are formed. The duration of the Si/N treatment and the low V/III ratio growth regime are optimised in order to reduce the TD density down to 8×107 cm−2, as measured from plan-view TEM images. It is observed that TDs bend through 90° at inclined side facets. The role of atomic ledges moving across inclined facets which are responsible for bending the line direction of the TDs is briefly discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Karpov, Sergey Yu. and Makarov, Yuri N., Appl. Phys. Lett., 81, 4721 (2002).Google Scholar
2. Beaumont, B., Vénneguès, P. and Gibart, P., Phys. Stat. Sol. B 227, 143 (2001).Google Scholar
3. Haffouz, S., Lahrèche, H., Vénneguès, P., Beaumont, B., Omnès, F., Gibart, P., Appl. Phys. Lett. 73, 1278 (1998).Google Scholar
4. Vénneguès, P., Beaumont, B., Haffouz, S., Vaille, M., Gibart, P., J. Cryst. Growth 187, 167 (1998).Google Scholar
5. Frayssinet, E., Beaumont, B., Faurie, J. P., Gibart, P., Makkai, Z., Pécz, B., Lefebvre, P., and Valvin, P., MRS Internet J. Nitride Semicond. Res. 7, 8 (2002).Google Scholar
6. Contreras, O., Ponce, F. A., Christen, J., Dadgar, A. and Krost, K., Appl. Phys. Lett. 81, 4712 (2002).Google Scholar
7. Figge, S., Böttcher, T., Einfeldt, S. and Hommel, D., J. Cryst. Growth, 221 262 (2000).Google Scholar
8. Barna, A., Mater. Res. Soc. Symp. Proc. 254, 322 (1992).Google Scholar
9. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., Chocho, K., Appl. Phys. Lett. 72, 211213 (1998).Google Scholar
10. Kozodoy, P., Ibbetson, J. P., Marchand, H., Fini, P. T., Keller, S., Speck, J. S., DenBaars, S.P., and Mishra, U. K., Appl. Phys. Lett. 73, 975 (1998).Google Scholar
11. Datta, R. et al, to be published.Google Scholar
12. Datta, R., Kappers, M. J., Vickers, M. E., Barnard, J. S. and Humphreys, C. J., Superlattices and Microstructures (2004), (accepted)Google Scholar
13. Dislocations in Solids, Edited by Nabarro, F. R. N., Vol. 5, pp-86, 1980 Google Scholar
14. Beam, E. A., Mahajan, S. and Bonner, W. A., Matls & Engg, B7 (1990) 83101 Google Scholar
15. Datta, R., Kappers, M. J., Barnard, J. S. and Humphreys, C. J., Proceedings of the 13th European Microscopy Congress, Antwerp, Belguim (2004), Vol.II, Materials Sciences, 445–46Google Scholar
16. Datta, R., Kappers, M. J., Barnard, J. S. and Humphreys, C. J., Appl. Phys. Lett., 85, 3411 (2004).Google Scholar
17. Benamara, M., Liliental-Weber, Z., Kellermann, S., Swider, W., Washburn, J., Mazur, J., and Bourret-Courchesne, E. D., J. Cryst. Growth, 218, 447 (2000).Google Scholar
18. Vénneguès, P., Beaumont, B., Bousquet, V., Vaille, M., Gibart, P., J. Appl. Phys. 87, 4175 (2000).Google Scholar
19. Gradečak, S., Stadelmann, P., Wagner, V., and Llegems, M., Appl. Phys. Lett., 85, 4648 (2004).Google Scholar
20. Frank, F. C., Discuss. Faraday Soc. 5, 67 (1949).Google Scholar