Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T09:14:35.691Z Has data issue: false hasContentIssue false

Recursive Image Charge Approach for Quantitative Characterization of Dielectric Thin Film Library Using Scanning Tip Microwave Near-field Microscopy

Published online by Cambridge University Press:  01 February 2011

Chen Gao
Affiliation:
National Synchrotron Radiation Laboratory and Department of Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
Bo Hu
Affiliation:
National Synchrotron Radiation Laboratory and Department of Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
Mengming Huang
Affiliation:
National Synchrotron Radiation Laboratory and Department of Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
Pu Zhang
Affiliation:
National Synchrotron Radiation Laboratory and Department of Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
Wen-han Liu
Affiliation:
National Synchrotron Radiation Laboratory and Department of Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
Get access

Abstract

We developed a recursive image charge approach for quantitative characterizations of dielectric thin films using the scanning tip microwave near-field microscope. With this method, frequency shift of the microscope as functions of the dielectric constant and the thickness of a film can be effectively computed in a recursive way. We believe that this approach can promote the high-throughput characterization of the dielectric libraries.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wei, T., Xiang, X.-D., Wallace-Freedman, W. G., and Schultz, P. G., Appl. Phys. Lett., 68, 35063508, (1996)Google Scholar
2. Chang, H., Gao, C., Takeuchi, I., Yoo, Y., Wang, J., Schultz, P. G., and Xiang, X. -D., Appl. Phys. Lett., 72, 21852187, (1998)Google Scholar
3. Gao, C., Duewer, F., Lu, Y., and Xiang, X.-D., Appl. Phys. Lett., 73, 11461148, (1998)Google Scholar
4. Chen, Y.-C., Cheng, H.-F., Wang, G., Xiang, X.-D., Chiang, Y.-C., Liu, K. S., and Lin, I.-N., J. Eur. Ceram. Soc., 23, 26712675, (2003)Google Scholar
5. Zhang, S. T., Chen, Y. F., Sun, H. P., Pan, X. Q., Tan, W. S., Liu, Z. G., and Ming, N. B., J. Appl. Phys., 94, 544550, (2003)Google Scholar
6. Okazaki, N., Odagawa, H., Cho, Y., Nagamura, T., Komiyama, D., Koida, T., Minami, H., Ahmet, P., Fukumura, T., Matsumoto, Y., Kawasaki, M., Chikyow, T., Koinuma, H., and Hasegawa, T., Appl. Surf. Sci., 189, 222226, (2002)Google Scholar
7. Gao, C., Xiang, X.-D., Rev. Sci. Instrum., 69, 38463851, (1998)Google Scholar
8. Gao, C., Duewer, Fred, and Xiang, X.-D., Appl. Phys. Lett., 75, 30053007, (1999)Google Scholar
9. Lee, J. H., Hyun, S., and Char, K., Rev. Sci. Instrum., 72, 14251433, (2001)Google Scholar
10. Cheng, H.-F., Chen, Y.-C., Wang, G., Xiang, X.-D., Chen, G.-Y., Liu, K. S., and Lin, I.-N., J. Eur. Ceram. Soc., 23, 26672670, (2003)Google Scholar
11. Steinhauer, D. E., Vlahacos, C. P., Wellstood, F. C., Anlage, S. M., Canedy, C., Ramesh, R., Stainshevsky, A., and Melngailis, J., Rev. Sci. Instrum., 71, 27512758, (2000)Google Scholar