Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T09:11:40.068Z Has data issue: false hasContentIssue false

Recent Progress of Electro-optic Polymers for Device Applications

Published online by Cambridge University Press:  10 February 2011

Alex K-Y. Jen
Affiliation:
Department of Chemistry, Northeastern University, Boston, MA 02115, [email protected]
Qing Yang
Affiliation:
Department of Chemistry, Northeastern University, Boston, MA 02115, [email protected]
Seth R. Marder
Affiliation:
Molecular Materials Resource Center, The Beckman Institute, California Institute of Technology, Mail Stop 139-74, Pasadena, CA 91125
Larry R. Dalton
Affiliation:
Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA 90089-1661
Ching-Fong Shu
Affiliation:
Department of Applied Chemistry, National Chiao-Tung University, 1001 Ta Hsueh Road, Hsin-Chu, Taiwan 30035
Get access

Abstract

Electro-optic (E-O) polymers have drawn great interest in recent years because of their potential applications in photonics devices such as high speed modulators and switches, optical data storage and information processing1–2. In order to have suitable materials for device fabrication, it is essential to design and develop polymeric material systems (active and passive polymers) with matched refractive indices, large E-O coefficients, good temporal and photochemical stability3–8 The E-O response of an active polymer commonly arises from the electric field induced alignment of its second-order nonlinear optical (NLO) chromophore, either doped as a guest/host system or covalently bonded as a side-chain. Because of the strong interaction among the electric dipoles, the poled structure is in a meta-stable state; the poled NLO chromophores which possess large dipole moment will tend to relax back to the randomly oriented state. As a result, the stability of the poled structure strongly depends on the rigidity of the overall material system. As it might be expected, the continuous increases of the rigidity and Tg of poled polymers imposes constraints on the selection of suitable chromophores that can survive the hightemperature poling and processing conditions. To circumvent this problem, we have developed a series of chromophores that possess conformation-locked geometry and perfluoro-dicyanovinylsubstituted electron-accepting group which demonstrate both good thermal stabilty and nonlinearity. This paper provides a brief review of these highly efficient and thermally stable chromophores and polymers for device applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. a) Marder, S.R., Kippelen, B., Jen, , Jen, A. K-Y., and Pheyghambarian, N., Nature, 1997, 388, 845. b) Lindsay, G. A., Singer, K. D. Eds. Polymers for Second-order Nonlinear Optics; ACS Symposium Series No. 601; American Chemical Society: Washington, DC, 1995.Google Scholar
2. Dalton, L. R., Harper, A. W., Ghosn, R., Steier, H. W., Ziari, M., Fetterman, H., Shi, Y., Mustacich, R. V., Jen, A. K-Y., Shea, K. J. Chem. Mater. 1995, 7, 1060.Google Scholar
3. Wu, J. W., Valley, J. F., Ermer, S., Binkley, E. S., Kenney, J. T., Lipscomb, G. F., Lytel, R. Appl. Phys. Lett. 1991, 58, 225.Google Scholar
4. Twieg, R.J., Lee, V.Y., Miller, R.D., Moylan, C.R., Volksen, W., Knoesen, A., Hill, , and Yankelevich, R. H., Technical Digest, 1995, 21, 279.Google Scholar
5. Verbiest, T.; Burland, D. M.; Jurich, M. C.; Lee, V. Y.; Miller, R. D.; Volksen, W. Science 1995, 268, 1604.Google Scholar
6. Yu, D.; Gharavi, A.; Yu, L.; Macromolecules 1995, 28, 784.Google Scholar
7. Chen, T.-A.; Jen, A. K-Y.; Cai, Y. M. J. Am. Chem. Soc. 1995, 117, 7295.Google Scholar
8. Wong, K. Y., Jen, A. K-Y., J. Apply. Phys. 1994, 75, 3308.Google Scholar
9. Dirk, C.W., Katz, H.E., Schilling, M. L., King, L. A., Chem. Mater. 1990, 2, 700.Google Scholar
10. (a) Jen, A. K-Y., Rao, V. P., Wong, K.Y., Drost, K. J. J. Chem. Soc. Chem. Commun. 1993, 90. (b) Jen, A. K-Y., Wong, K.Y., Rao, V.P., Drost, K.J. Cai, Y., J. Electronic Mater. 1993, 1118.Google Scholar
11. Marder, S. R., Cheng, L-T. Tiemann, B.G., Friedli, A. C. Blanchard-Desce, M., Perry, J. W., Skindhoj, J. Science 1994, 263, 511.Google Scholar
12. Cai, Y. M.; Jen, A. K-Y. Appl. Phys. Lett. 1995, 67, 299.Google Scholar
13. Ahlheim, M., Barzoukas, M., Bedworth, , Hu, P.V., , J.Y., Marder, , Perry, S. R., Fort, J. W., Runser, A., Stahelin, , Zysset, C. M., , B. Science, 1996, 271, 335.Google Scholar
14. a) Hsu, C. F., Tsai, W. J., Chen, J. Y., Jen, A. K-Y., Zhang, Y., Chen, T. A., Chem. Commun., 1996, 2279. b) Hsu, C. F., Tsai, W. J. and Jen, A. K-Y., Tetrahedron Lett., 1996, 37(39), 7055.Google Scholar
15 Wang, F., Harper, A. W., He, M., Dalton, L. R., Garner, S. M., Yacoubian, A., and Steier, W.H., Polymer Preprints, 1997, 38(1), 971.Google Scholar
16. Chen, T.-A.; Jen, A. K-Y.; Cai, Y. M. Chem. Mater. 1996, 8, 607.Google Scholar
17. Rao, V. P.; Jen, A. K-Y.; Cai, Y. M. J. Chem. Soc., Chem. Commun. 1996, 1237.Google Scholar