Published online by Cambridge University Press: 31 January 2011
In this study, 1 μm thick polycrystalline CdTe films were deposited by magnetron sputtering using a variable argon pressure, 2.5 ≤ pAr ≤ 50 mTorr, and a fixed substrate temperature, Ts = 230°C. Real time spectroscopic ellipsometry (RTSE) was performed during deposition in order to analyze the nucleation and coalescence, as well as the evolution of the surface roughness thickness ds with bulk layer thickness db and the depth profile in the void volume fraction fv. A linear correlation was found between the final ds value measured by RTSE at the end of deposition and the root-mean-square (rms) surface roughness measured by atomic force microscopy (AFM) ex situ after deposition. A monotonic decrease in RTSE-determined roughness thickness is observed with decreasing Ar pressure from 18 to 2.5 mTorr. The lowest pressure also leads to the greatest bulk layer structural uniformity; in this case, fv increases to 0.04 with increasing CdTe thickness to 1 μm. The photovoltaic performance of CdTe films prepared with the lowest pressure of pAr = 2.5 mTorr is compared with that of previously optimized CdTe solar cells with pAr = 10 mTorr.