Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T16:04:16.275Z Has data issue: false hasContentIssue false

Real-Time Investigations on the Formation of Cu(In,Ga)Se2 While Annealing Precursors Produced with a Combination of Sputtering and Thermal Evaporation

Published online by Cambridge University Press:  01 February 2011

Stefan Jost
Affiliation:
[email protected], University of Erlangen-Nürnberg, Chair for Crystallography & Structural Physics, Staudtstr. 3, Erlangen, 91058, Germany
Frank Hergert
Affiliation:
[email protected], University of Erlangen-Nürnberg, Chair for Crystallography & Structural Physics, Staudtstr. 3, Erlangen, D-91058, Germany
Rainer Hock
Affiliation:
[email protected], University of Erlangen-Nürnberg, Chair for Crystallography & Structural Physics, Staudtstr. 3, Erlangen, D-91058, Germany
Michael Purwins
Affiliation:
[email protected], University of Erlangen-Nürnberg, Crystal Growth Laboratory, Department of Materials Science VI, Martensstr. 7, Erlangen, D-91058, Germany
Get access

Abstract

We have investigated the formation of Cu(In,Ga)Se2 thin films by real-time X-ray diffraction (XRD) experiments while annealing differently deposited and composed stacked elemental layer (SEL) precursors.

The in-situ measurements during the selenization of bi-layered Cu/In precursors reveal, that the semiconductor formation process is similar for precursors with thermally evaporated or sputtered indium. In both cases, the formation of binary copper and indium selenides is observed at temperatures around the melting point of selenium. After subsequent selenium transfer reactions, the chalcopyrite CuInSe2 is formed from the educt phases Cu2-xSe and InSe.

The addition of gallium leads to the formation of the intermetallic precursor phase Cu9Ga4, which reduces the overall amount of copper and gallium selenides at process temperatures above 500 K. This causes an ongoing selenization in the indium selenium subsystem, which results in the formation of CuInSe2 from the educt phases Cu2-xSe and the selenium richest indium selenide g-In2Se3.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Probst, V., Palm, J., Visbeck, S., Niesen, T., Tölle, R., Lerchenberger, A., Wendl, M., Vogt, H., Calwer, H., Stetter, W., and Karg, F., Sol. Energy Mater. Sol. Cells 90, 31153123 (2006).Google Scholar
2. Jost, S., Hergert, F., Hock, R., Purwins, M., and Enderle, R., Z. Krist. Suppl. 23, 124 (2006).Google Scholar
3. Jost, S., Hergert, F., Hock, R., Purwins, M., and Enderle, R., Physica Status Solidi A 203(11), 25812587 (2006).Google Scholar
4. Hammersley, A.P., ESRF, Internal Report ESRF97HA02T (1997).Google Scholar
5. Hammersley, A.P., Svensson, S. O., and Thompson, A., Nucl. Instr. Meth. A 346, 312321 (1994).Google Scholar
6. Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., and Häusermann, D., High Pressure Research 14, 235248 (1996).Google Scholar
7. Rietveld, H.M., J. Appl. Cryst. 2, 6571 (1969).Google Scholar
8. Hergert, F., Hock, R., Weber, A., Purwins, M., Palm, J., and Probst, V., J. Phys. Chem. Solids 66 (11), 19031907 (2005).Google Scholar
9. Jost, S., Hergert, F., Hock, R., Schulze, J., Kirbs, A., Vofl, T., Purwins, M., and Schmid, M., Sol. Energy Mater. Sol. Cells 91(7), 636644 (2007).Google Scholar
10.Binary Alloy Phase Diagrams”, edited by Massalski, T., Okamoto, P. R., Subramanian, P. R., and Kacprzak, L., ASM International, Materials Park (USA) 3 volumes (1990).Google Scholar
11. Wolf, D., Ph.D. Thesis, University of Erlangen-Nürnberg (1998).Google Scholar
12. Hergert, F., Jost, S., Hock, R., Purwins, M., and Palm, J., Thin Solid Films 515, 58435847 (2007).Google Scholar
13. Palm, J., Probst, V., and Karg, F., Solar Energy 77, 757765 (2004).Google Scholar
14. Marudachalam, M., Hichri, H., Klenk, R., Birkmire, R. W., and Shafarman, W. N., Appl. Phys. Lett. 67, 39783980 (1995).Google Scholar
15. Purwins, M., Schmid, M., Berwian, P., Müller, G., Jost, S., Hergert, F., and Hock, R., Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden, Germany, 4 –8 September 2006.Google Scholar