Published online by Cambridge University Press: 28 February 2013
The real-time electronic performance of a gallium nitride nanowire-based field effect transistor was investigated at five-minute intervals over thirty minutes of continuous irradiation by Xenon-124 relativistic heavy ions. An initial current surge that resulted in device improvement rather than device failure was observed. The current surge, and subsequent electronic behavior, was modeled using a combined thermionic emission-tunnelling approach, leading to information about barrier height, carrier concentrations, expected temperature behavior, and tunnelling.