Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T01:53:09.649Z Has data issue: false hasContentIssue false

Real-time and Direct Observation of Hydrogen Absorption Dynamics for Pd Nanoparticles

Published online by Cambridge University Press:  01 February 2011

Daiju Matsumura
Affiliation:
[email protected], Japan Atomic Energy Agency, Synchrotron Radiation Research Center, Sayo, Japan
Yuka Okajima
Affiliation:
[email protected], Japan Atomic Energy Agency, Synchrotron Radiation Research Center, Sayo, Hyogo, Japan
Yasuo Nishihata
Affiliation:
[email protected], Japan Atomic Energy Agency, Synchrotron Radiation Research Center, Sayo, Hyogo, Japan
Jun'ichiro Mizuki
Affiliation:
[email protected], Japan Atomic Energy Agency, Synchrotron Radiation Research Center, Sayo, Hyogo, Japan
Get access

Abstract

Dynamic local structural change of Pd nanoparticles on alumina surface during hydrogen absorption process was directly observed by x-ray absorption fine structure spectroscopy with dispersive mode. Main four parameters of x-ray absorption spectroscopy were determined even in the case of 50 Hz observation. It is clearly revealed that Pd nanoparticles directly change to the hydride phase in 50 ms at 200 kPa of hydrogen pressure. Although large lattice expansion was observed, significant structural distortion was not investigated in the results of the change of Debye-Waller factor.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Frieske, H. and Wicke, E. Ber. Bunseges. Physik. Chem. 77, 50 (1973).Google Scholar
2 Kay, B. D. Peden, C. H. F. and Goodman, D. W. Phys. Rev. B 34, 816 (1986).Google Scholar
3 Yamauchi, M. Ikeda, R. Kitagawa, H. and Takata, M. J. Phys. Chem. C 112, 3294 (2008).Google Scholar
4 Wilde, M. and Fukutani, K. Phys. Rev. B 78, 115411 (2008).Google Scholar
5 Wilde, M. Fukutani, K. Naschitzki, M. and Freund, H. -J. Phys. Rev. B 77, 113412 (2008).Google Scholar
6 Kobayashi, H. Yamauchi, M. Kitagawa, H. Kubota, Y. Kato, K. and Takata, M. J. Am. Chem. Soc. 130, 1818 (2008).Google Scholar
7 Sachs, C. Pundt, A. Kirchheim, R. Winter, M. Reets, M. T. and Fritsh, D. Phys. Rev. B 64, 075408 (2001).Google Scholar
8 Eastman, J. A. Thompson, L. J. and Kestel, B. J. Phys. Rev. B 48, 84 (1993).Google Scholar
9 Matsushita, T. and Phizackerley, R. P. Jpn. J. Appl. Phys. 20, 2223 (1981).Google Scholar
10 Kaminaga, U. Matsushita, T. and Kohra, K. Jpn. J. Appl. Phys. 20, 355 (1981).Google Scholar
11 Okajima, Y. Matsumura, D. Nishihata, Y. Konishi, H. and Mizuki, J. AIP Conference Proceedings 879, 1234 (2007).Google Scholar
12 Matsumura, D. Okajima, Y. Nishihata, Y. Mizuki, J. Taniguchi, M. Uenishi, M. and Tanaka, H., J. Phys.: Conf. Ser. 190, 012154 (2009).Google Scholar
13 Lengeler, B. Phys. Rev. Lett. 53, 74 (1984).Google Scholar
14 Davis, R. J. Landry, S. M. Horsley, J. A. and Boudart, M. Phys. Rev. B 39, 10580 (1989).Google Scholar
15 Yokoyama, T. Hamamatsu, H. and Ohta, T. EXAFSH, The Unversity of Tokyo, 2nd Ed. (1998).Google Scholar
16 Ankudinov, A. L. Nesvizhskii, A. I. and Rehr, J. J. Phys. Rev. B 67, 115120 (2003).Google Scholar