Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-06T10:18:05.199Z Has data issue: false hasContentIssue false

Reactive Ion Etching of In-Based III-V Semiconductors -Comparison of Cl and C2H6 Chemistries

Published online by Cambridge University Press:  21 February 2011

S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
U. K. Chakrabarti
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
F. A. Baiocchi
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
W. S. Hobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

The reactive ion etching of InP, InGaAs and InAlAs in CC12F2 /O 2 or C2H6 /H 2 discharges was investigated as a function of the plasma parameters pressure, power density, flow rate and relative composition. The etch rates of these materials are a factor of 3-5 times faster in CC12F2 /O 2 (∼600–1000 Å · min−1) compared to C2H6 /H 2(160–320 Å · min−1). Significantly smoother morphologies are obtained with C2H6 /H 2 etching provided the composition of the plasma is no more than 10 - 20% by volume of C2H6. At higher methane compositions, polymer formation increases leading to micromasking and rough surface morphologies. Sub-surface disorder is limited to <100 Å deep for both gas chemistries for plasma power densities of 0.85 W cm−2. The C2H6 /H 2 mixture leaves an In-rich surface in all cases, but this surface is free of any residual contamination, whereas the CC12F2/O2 chemistry leaves chloro-fluorocarbon residues approximately 20–50 Å thick on the surface of all three In-based materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Lecrosnier, D., Henry, L., LeCorre, A. and Vaudry, C., Electron. Lett. 23 1254 (1987).Google Scholar
[2] Cheung, R., Thomas, S., McIntyre, I., Wilkinson, C. D. W. and Beamont, S. P., J. Vac. Sci. Technol. B5 1911 (1988).Google Scholar
[3] Hu, E. L. and Howard, R. E., Appl. Phys. Lett. 37 1022 (1980).Google Scholar
[4] Wong, H. F., Green, D. L., Liu, T. Y., Lishan, D. G., Bellis, M., Hu, E., Petroff, P. M., Holtz, P. O. and Merz, J. L., J. Vac. Sci. Technol. B6 1906 (1988).Google Scholar
[5] Pearton, S. J., Chakrabarti, U. K. and Baiocchi, F. A., Appl. Phys. Lett. (Oct. 16, 1989 issue).Google Scholar
[6] Kunitsuga, Y., Suemune, I., Tanaka, Y., Kan, Y. and Yamanishi, M., J. Cryst. Growth 95 91 (1989).Google Scholar
[7] Asakawa, K. and Augata, S., J. Vac. Sci. Technol. A4 677 (1986).Google Scholar
[8] Saito, J., Nanbu, K., Ishikawa, T. and Kondo, K., J. Cryst. Growth 95 322 (1989).Google Scholar
[9] Chang, R. P. H., Chang, C. C. and Darack, S., J. Vac. Sci.Technol. 20 45 (1982).Google Scholar
[10] Thomas, J. H. III, Kaganowicz, G. and Robinson, J. W., J. Electrochem. Soc. 135 1201 (1988).Google Scholar
[11] Fonash, S. J., Solid-State Technol. 28 150 (1985).Google Scholar
[12] Proix, F., M'hamedi, O. and Sebenne, C. A., J. Vac. Sci. Techn. A6 199 (1988).Google Scholar