Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T09:19:27.400Z Has data issue: false hasContentIssue false

Rb1C60: Linear Polymer Chains and Dimers

Published online by Cambridge University Press:  15 February 2011

Michael C. Martin
Affiliation:
Department of Physics, SUNY at Stony Brook, Stony Brook, NY 11794-3800
Daniel Koller
Affiliation:
Department of Physics, SUNY at Stony Brook, Stony Brook, NY 11794-3800
A. Rosenberg
Affiliation:
Code 6650, Naval Research Laboratory, Washington, DC 20375
C. Kendziora
Affiliation:
Code 6650, Naval Research Laboratory, Washington, DC 20375
L. Mihaly
Affiliation:
Department of Physics, SUNY at Stony Brook, Stony Brook, NY 11794-3800
Get access

Abstract

The infrared- and Raman-active vibrational modes of C60 were measured in the various structural states of Rb1C60. According to earlier studies, Rb1 C60 has an f cc structure at temperatures above ∼ 100°C, a linear chain polymer orthorhombic structure when slowly cooled, and an as yet undetermined structure when very rapidly cooled (“quenched”). We show that the spectra obtained in the polymer state are consistent with each C60 molecule having bonds to two diametrically opposite neighbors. In the quenched state, we find evidence for further symmetry breaking, implying a lower symmetry structure than the polymer state. The spectroscopic data of the quenched phase are shown to be consistent with Rb2(C60)2, a dimerization of C60.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Winter, J. and Kuzmany, H., Solid State Commun. 84, 935 (1992).Google Scholar
[2] Poirier, D.M. et al. , Phys. Rev. B 47, 9870 (1993).Google Scholar
[3] Jànossy, A. et al. , Phys. Rev. Lett. 71, 1091 (1993).Google Scholar
[4] Zhu, Q. et al. , Phys. Rev. B 47, 13 948 (1993).Google Scholar
[5] Tycko, R. et al. , Phys. Rev. B 48, 9097 (1993).Google Scholar
[6] Martin, M.C. et al. , Phys. Rev. B 49, 10 818 (1994).Google Scholar
[7] Chauvet, O. et al. , Phys. Rev. Lett. 72, 2721 (1994).Google Scholar
[8] Stephens, P.W. et al. , Nature 370, 636 (1994).Google Scholar
[9] Kolier, D. et al. , Submitted to Appl. Phys. Lett. Google Scholar
[10] Pekker, S. et al. , Science 265, 1077 (1994).Google Scholar
[11] Pekker, S. et al. , Solid State Commun. 90, 349 (1994).Google Scholar
[12] Pekker, S. et al. , private communication. Google Scholar
[13] Zhu, Q. et al. , unpublished. Google Scholar
[14] Martin, M.C. et al. , Phys. Rev. B to appear Feb. 1 1995. Google Scholar
[15] Koller, D. et al. , Rev. Sci. Instrum. 65, 760 (1994).Google Scholar
[16] Martin, M.C. et al. , Phys. Rev. B 47, 14 607 (1993); 50, 6538 (1994).Google Scholar
[17] Rice, M.J. and Choi, H.Y., Phys. Rev. B 45, 10 173 (1992).Google Scholar
[18] Rao, A.M. et al. , Science 259, 955 (1993); P.H.M. van Loosdrecht et al., Chem. Phys. Lett. 205, 191 (1993).Google Scholar
[19] Martin, M.C. et al. , Phys. Rev. B 50, 173 (1994).Google Scholar
[20] Coulombeau, C. et al. , J. Phys. Chem. 986, 22 (1992); G. Gensterblum et al., Phys. Rev. Lett. 67, 2171 (1991).Google Scholar
[21] Doug, Z.-H. et al. , Phys. Rev. B 48, 2862 (1993); K.-A. Wang et al., Phys. Rev. B 48, 11 375 (1993).Google Scholar
[22] Pederson, M.R. and Quong, A.A., unpublished. Google Scholar
[23] Mitch, M.G. et al. , Phys. Rev. Lett. 68, 883 (1992); S.J. Duclos et al., Science 254, 1625 (1991); P. Zhou et al., Phys. Rev. B 48, 8412 (1993).Google Scholar
[24] Pichler, T. et al. , Condens. Matter Commun. 1, 21 (1993); K.-J. Fu et al., Phys. Rev. B 46, 1937 (1992).Google Scholar