Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-06T04:11:55.405Z Has data issue: false hasContentIssue false

Rational Design of Macrocellular TiO2 and V2O5 Monoliths Obtained Through Soft Chemistry and Air-liquid Foams

Published online by Cambridge University Press:  01 February 2011

F. Carn
Affiliation:
Centre de Recherche Paul Pascal CNRS UPR 8641, 115 Ave Albert Schweitzer, 33600 Pessac, France
N. Steunou
Affiliation:
LCMC Laboratoire de Chimie de la Matière Condensée, UMR-7574 CNRS, 4 Place Jussieu, Université Pierre et Marie Curie, Paris CEDEX 05
A. Colin
Affiliation:
Laboratoire du Futur, UMR CNRS-Rhodia FRE2771, IECB, 2 rue Robert Escarpit, 33607 Pessac, France.
J. Livage
Affiliation:
LCMC Laboratoire de Chimie de la Matière Condensée, UMR-7574 CNRS, 4 Place Jussieu, Université Pierre et Marie Curie, Paris CEDEX 05
C. Sanchez
Affiliation:
LCMC Laboratoire de Chimie de la Matière Condensée, UMR-7574 CNRS, 4 Place Jussieu, Université Pierre et Marie Curie, Paris CEDEX 05
R. Backov*
Affiliation:
Centre de Recherche Paul Pascal CNRS UPR 8641, 115 Ave Albert Schweitzer, 33600 Pessac, France
Get access

Abstract

Chemistry of shapes appears as a strong interdisciplinary field of research that encompasses both the area of soft matter, physical-chemistry and soft chemistry. In this general context, hierarchical inorganic macrocellular monoliths have been obtained using air-liquid foams as a macroscopic pattern while lyotropic mesophases are employed to create porosity at the mesoscale. At the macroscopic length scale, both cell sizes and shapes as well as the Plateau borders thickness and topologies can be designed with a strong degree of control. Some examples with different inorganic network as TiO2 and V2O5 are depicted with specific characterizations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Carn, F., Colin, A., Achard, M.-F, Deleuze, H., Backov, R., Adv. Mater., 2004, 16, 140.Google Scholar
2. Carn, F., Colin, A., Achard, M-F., Sellier, E., Birot, M., Deleuze, H., Backov, R., J. Mater. Chem. 2004, 14, 1370.Google Scholar
3. Wang, D., Caruso, R. A., Caruso, F. Chem. Mater. 2001, 13, 364.Google Scholar
4. Hall, S. R., Bolger, H., Mann, S., Chem. Commun., 2003, 2784.Google Scholar
5. Mann, S., Nature, 1988, 332, 119;Google Scholar
Archibald, D.D., Mann, S., Nature, 1993, 364, 430;Google Scholar
Yang, H., Kuperman, A., Coombs, N., Mamiche-Afara, S., Ozin, G.A., Nature, 1996, 379, 703.Google Scholar
6. Chandrappa, G.T., Steunou, N., Livage, J., Nature, 2002, 416, 702.Google Scholar
7. Bagshaw, S.A., Chem. Com., 1999, 767.Google Scholar
8. Carn, F., Colin, A., Achard, M.F., Deleuze, H., Sanchez, C., Backov, R., Adv. Mat.(in press) Google Scholar
9. Carn, F., Steunou, N., Colin, A., Livage, J., Backov, R., Chem. Mat.(in press) Google Scholar
10. Pelletier, O., Davidson, P., Bourgaux, C., Coulon, C., Regnault, S., Livage, J., Langmuir 2000, 16, 5295.Google Scholar
11. Vigolo, B., C., ; Zakri, ; Nallet, F., Livage, J., Coulon, C., Langmuir 2002, 18, 9121.Google Scholar
12. Phelan, R., Weare, D., Peters, E.A.J.F., Versit, G., J. Phys.: Condens. Matter, 1996, 8, 475.Google Scholar
13. Aldebert, P., Baffier, N.; Gharbi, N., Livage, J., J. Mater. Res. Bull. 1981, 16, 669.Google Scholar
14. Schulz, D., Larson, F., McCarthy, G., North Dakota State Univ. 1988, Fargo, ND, USA, ICDD Grant-in-Aid.Google Scholar
15. Wadsley, A.D., Acta Crystallogr. 1955, 8, 695.Google Scholar
16. Fontenot, C.J., Wiench, J.W., Pruski, M., Schrader, G.L., J. Phys. Chem. B. 2001, 105, 10496.Google Scholar