Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T15:33:08.506Z Has data issue: false hasContentIssue false

Rate-equation modelling of ion beam assisted homoepitaxy on low-index surfaces of Ag and Cu

Published online by Cambridge University Press:  01 February 2011

Jussi K. Sillanpää
Affiliation:
Department of Applied Science, UC Davis, Davis, CA 95616, USA
Ismo T. Koponen
Affiliation:
Department of Physical Sciences, University of Helsinki, P.O.Box 9, SF-00014 University of Helsinki, Finland
Niels Grønbech-Jensen
Affiliation:
Department of Applied Science, UC Davis, Davis, CA 95616, USA
Get access

Abstract

We develop a rate-equation model for ion beam assisted homoepitaxy. The model describes how island diffusion, detachment and breakup, generation of surface damage and interlayer transitions of adatoms and monovacancies affect the growth. We simulate the (100) and (110) surfaces of silver and the (100) surface of copper using potential energy barriers calculated using either surface embedded atom method (SEAM) or the effective medium theory (EMT). We study how the choice of the potential barriers affects the growth and comment on the suitability of SEAM and EMT for calculating barriers for surface simulation. We demonstrate how different processes affect the microstructure of the film, compare the growth on different surfaces and study the scaling properties of the results.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kellerman, B. K. et al., Appl. Phys. Lett. 67, 1703 (1995).Google Scholar
2. Choi, C. H., Ai, R., and Barnett, S. A., Phys. Rev. Lett. 67, 2826 (1991).Google Scholar
3. Ensinger, W., Nucl. Instr. and Meth. B 127/128, 796 (1997).Google Scholar
4. Kalf, M. et al., Appl. Phys. Lett. 70, 182 (1997).Google Scholar
5. Jacobsen, J., Cooper, B. H., and Sethna, J. P., Phys. Rev. B 58, 15847 (1998).Google Scholar
6. Chason, E. and Kellerman, B. K., Nucl. Instr. and Meth. B 127/128, 225 (1997).Google Scholar
7. Dong, L. and Srolovitz, D., J. Appl. Phys. 84, 5261 (1998).Google Scholar
8. Sillanpää, J. and Koponen, I., Nucl. Instr. and Meth. B 124, 67 (1998).Google Scholar
9. Rusanen, M., Koponen, I., Heinonen, J., and J. Sillanpää, Nucl. Instr. and Meth. B 148, 116 (1999).Google Scholar
10. Sillanpää, J., Koponen, I., and Grønbech-Jensen, N., Nucl. Instr. and Meth. B 184, 523 (2001).Google Scholar
11. Koponen, I. T., Nucl. Instr. and Meth. B 171, 314 (2000).Google Scholar
12. Mulheran, P. and Robbie, D., Phys. Rev. B 64, 115402 (2001).Google Scholar
13. Bogicevic, A. et al., Phys. Rev. B 57, R9459 (1998).Google Scholar
14. Dobbs, H. T. et al., Phys. Rev. Lett. 79, 897 (1997).Google Scholar
15. Haftel, M., Phys. Rev. B 64, 125415 (2001).Google Scholar
16. Merikoski, J., Vattulainen, I., Heinonen, J., and Ala-Nissila, T., Surf. Sci. 387, 167 (1997).Google Scholar
17. Bales, G. S. and Chrzan, D. C., Phys. Rev. B 50, 6057 (1994).Google Scholar