Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T07:27:07.190Z Has data issue: false hasContentIssue false

Rare-earth doped Si nanostructures for Microphotonics

Published online by Cambridge University Press:  15 March 2011

D. Pacifici
Affiliation:
MATIS-INFM and Dipartimento di Fisica e Astronomia, Via S. Sofia 64, I-95123 Catania, Italy
G. Franzò
Affiliation:
MATIS-INFM and Dipartimento di Fisica e Astronomia, Via S. Sofia 64, I-95123 Catania, Italy
F. Iacona
Affiliation:
CNR-IMM, Sezione di Catania, Stradale Primosole 50, I-95121 Catania, Italy
A. Irrera
Affiliation:
CNR-IMM, Sezione di Catania, Stradale Primosole 50, I-95121 Catania, Italy
S. Boninelli
Affiliation:
MATIS-INFM and Dipartimento di Fisica e Astronomia, Via S. Sofia 64, I-95123 Catania, Italy
M. Miritello
Affiliation:
MATIS-INFM and Dipartimento di Fisica e Astronomia, Via S. Sofia 64, I-95123 Catania, Italy
F. Priolo
Affiliation:
MATIS-INFM and Dipartimento di Fisica e Astronomia, Via S. Sofia 64, I-95123 Catania, Italy
Get access

Abstract

In the present paper, we will review our work on rare-earth doped Si nanoclusters. The samples have been obtained by implanting the rare-earth (e.g. Er) in a film containing preformed Si nanocrystals. After the implant, samples have been treated at 900°C for 1h. This annealing temperature is not enough to re-crystallize all of the amorphized Si clusters. However, even if the Si nanoclusters are in the amorphous phase, they can still efficiently transfer the energy to nearby rare-earth ions. We developed a model for the Si nanoclusters-Er system, based on an energy level scheme taking into account the coupling between each Si nanocluster and the neighboring Er ions. By fitting the data, we were able to determine a value of 3×10−15 cm3 s−1 for the Si nanocluster-Er coupling coefficient. Moreover, a strong cooperative up-conversion mechanism between two excited Er ions and characterized by a coefficient of 7×10−17 cm3 s−1, is shown to be active in the system, demonstrating that more than one Er ion can be excited by the same nanocluster. We show that the overall light emission yield of the Er related luminescence can be enhanced by using higher concentrations of very small nanoaggregates. Eventually, electroluminescent devices based on rare-earth doped Si nanoclusters will be demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kenyon, A. J., Trwoga, P. F., Federighi, M., and Pitt, C. W., J. Phys.: Condens. Matter 6, L319 (1994).Google Scholar
2. Fujii, M., Yoshida, M., Kanzawa, Y., Hayashi, S., and Yamamoto, K., Appl. Phys. Lett. 71, 1198 (1997).Google Scholar
3. Franzò, G., Vinciguerra, V., and Priolo, F., Appl. Phys. A: Mater. Sci. Process. 69, 3 (1999).Google Scholar
4. Priolo, F., Franzò, G., Pacifici, D., Vinciguerra, V., Iacona, F., and Irrera, A., J. Appl. Phys. 89, 264 (2001).Google Scholar
5. Franzò, G., Pacifici, D., Vinciguerra, V., Iacona, F., and Priolo, F., Appl. Phys. Lett. 76, 2167 (2000).Google Scholar
6. Kik, P. G., Brongersma, M. L., and Polman, A., Appl. Phys. Lett. 76, 2325 (2000).Google Scholar
7. Seo, S. -Y., and Shin, J. H., Appl. Phys. Lett. 78, 2709 (2001).Google Scholar
8. Watanabe, K., Fujii, M. and Hayashi, S., J. Appl. Phys. 90, 4761 (2001).Google Scholar
9. Han, H. -S., Seo, S. -Y., Shin, J. H., and Park, N., Appl. Phys. Lett. 81, 3720 (2002)Google Scholar
10. Iacona, F., Pacifici, D., Irrera, A., Miritello, M., Franzò, G., Priolo, F., Sanfilippo, D., Stefano, G. Di, and Fallica, P. G., Appl. Phys. Lett. 81, 3242 (2002)Google Scholar
11. Pacifici, D., Franzò, G., Iacona, F., Negro, Luca Dal, and Priolo, F., Phys. Rev. B 67, 245301 (2003).Google Scholar
12. Pacifici, D., Moreira, E.C., Franzò, G., Martorino, V., Iacona, F., and Priolo, F., Phys. Rev. B 65, 144109 (2002).Google Scholar
13. Allan, G., Delerue, C., and Lannoo, M., Phys. Rev. Lett. 78, 3161 (1997).Google Scholar
14. Kobitski, A.Yu., Zhuravlev, K. S., Wagner, H. P., and D. Zahn, R. T., Phys. Rev. B 63, 115423 (2001).Google Scholar
15. Wölkin, M. V., Jorne, J., Fauchet, P. M., Allan, G. and Delerue, C., Phys. Rev. Lett. 82, 197 (1999).Google Scholar
16. Förster, T., Ann. Phys. (N.Y.) 2, 55 (1948).Google Scholar
17. Dexter, D.L., J. Chem. Phys. 21, 836 (1953).Google Scholar
18. Kovalev, D., Gross, E., Künzner, N., Koch, F., Timoshenko, V. Yu., Fujii, M., Phys. Rev. Lett. 89, 137401 (2002).Google Scholar
19. Jhe, J.-H., Shin, J. H., Kim, K.J., and Moon, D.W., Appl. Phys. Lett. 82, 4489 (2003).Google Scholar
20. Fujii, M., Yoshida, M., Hayashi, S., and Yamamoto, K., J. Appl. Phys. 84, 4525 (1998).Google Scholar
21. Shin, J. H., Kim, M.-J., Seo, S.-Y., and Lee, C., Appl. Phys. Lett. 72, 1092 (1998).Google Scholar
22. Franzò, G., Irrera, A., Moreira, E.C., Miritello, M., Iacona, F., Sanfilippo, D., Stefano, G. Di, Fallica, P.G., and Priolo, F., Appl. Phys. A 74, 1 (2002).Google Scholar
23. Iacona, F., Pacifici, D., Irrera, A., Miritello, M., Franzò, G., Priolo, F., Sanfilippo, D., Stefano, G. Di, and Fallica, P. G., Appl. Phys. Lett. 81, 3242 (2002).Google Scholar
24. Irrera, A., Pacifici, D., Miritello, M., Franzò, G., Priolo, F., Iacona, F., Sanfilippo, D., Stefano, G. Di, and Fallica, P. G., Appl. Phys. Lett. 81, 1866 (2002).Google Scholar