Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T13:30:37.264Z Has data issue: false hasContentIssue false

Rapid Prototyping of Biomimetic Structures: Fabrication of Mosquito-like Microneedles by Two-Photon Polymerization

Published online by Cambridge University Press:  31 January 2011

Shaun D. Gittard
Affiliation:
[email protected], North Carolina State University, Raleigh, North Carolina, United States
Roger J Narayan
Affiliation:
[email protected], North Carolina State University, Raleigh, North Carolina, United States
Aleksandr Ovsianikov
Affiliation:
[email protected], Laser Zentrum Hannover e.V., Hannover, Germany
Boris N. Chichkov
Affiliation:
[email protected], Laser Zentrum Hannover e.V., Hannover, Germany
Get access

Abstract

Over the past twenty years, the use of rapid prototyping techniques for processing of medical devices has seen rapid growth. A number of rapid prototyping techniques currently exist for producing a broad range of medical devices using metals, ceramics, polymers, and composite materials. One promising rapid prototyping technology for creating medical devices with small scale features is two photon polymerization; this scalable photopolymerization technique enables processing of photosensitive materials such as organically-modified ceramic materials. In this study, two photon polymerization was used to produce microneedles that mimic the anatomy of the mosquito fascicle. The labrum of the mosquito was replicated in the mosquito-like microneedle. On the other hand, the maxillae of the mosquito were not replicated in the mosquito-like microneedle; the absence of these features was attributed to inadequate mechanical support of the maxillae. This study suggests that two photon polymerization and other rapid prototyping technologies may be used to produce biomimetic drug delivery devices that imitate the intricate structures found in nature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Pham, D.T. and Gault, R.S. Int. J. Mach. Tool Manufact. 38 (1998) 1257.Google Scholar
2 Tay, B.Y. J.Evans, R.G. and Edirisinghe, M.J. Int. Mater. Rev. 48 (2003) 341.Google Scholar
3 Boland, T. Ovsianikov, A. Chichkov, B.N. Doraiswamy, A. Narayan, R.J. Yeong, W.Y. Leong, K.F. and Chua, C.K., Adv. Mater. Proc. 165 (2007) 51.Google Scholar
4 Wendel, B. Rietzel, D. Kuhnlein, F. Feulner, R. Hulder, G. and Schmatchenberg, E. Macromol. Mater. Eng. 293 (2008) 799.Google Scholar
5 Singare, S. Li, D.C. Lu, B.G, Liu, Y.P. Gong, Z.Y. and Liu, Y.X. Med. Eng. Phys. 26 (2004) 671.Google Scholar
6 Singare, S. Dichen, L. Bingheng, L. Zhenyu, G. and Yaxiong, L. Rapid Prototyping J. 11 (2005) 113.Google Scholar
7 Subburaj, K. Nair, C. Rajesh, S. Meshram, S.M. and Ravi, B. Int. J. Oral Maxillofac. Surg. 36 (2007) 938.Google Scholar
8 Kim, M.S. Hansgen, A.R. and Carroll, J.D. Trends Cardiovasc. Med. 18 (2008) 210.Google Scholar
9 Gittard, S.D. Narayan, R.J. Lusk, J. Morel, P. Stockmans, F. Ramsey, M. Laverde, C. Phillips, J. Monteiro-Riviere, N.A., Ovsianikov, A. and Chichkov, B.N. Biotechnol. J. 4 (2009) 129.Google Scholar
10 Hollister, S.J. Nature Mater. 4 (2005) 518.Google Scholar
11 Xiong, Z. Yan, Y. Wang, S. Zhang, R. and Zhang, C. Scripta Mater. 46 (2002) 771.Google Scholar
12 Yan, Y. Wu, R. Zhang, R. Xiong, Z. and Lin, F. Rapid Prototyping J. 9 (2003) 142.Google Scholar
13 Pfister, A. Landers, R. Laib, A. Hubner, U. Schmelzeisen, R. and Mulhaupt, R. J. Polym. Sci. Part A 42 (2004) 624.Google Scholar
14 Cohen, D.L. Malone, E. Lipson, H. and Bonassar, L.J. Tissue Eng. 12 (2006) 1325.Google Scholar
15 Peltola, S.M. Melchels, F.P.W. Grijpma, D.W. and Kellomaki, M. Ann. Med. 40 (2008) 268.Google Scholar
16 Serbin, J. Egbert, A. Ostendorf, A. Chichkov, B.N. Houberz, R. Domann, G. Schulz, J. Cronauer, C. Frohlich, L. and Popall, M. Opt. Lett. 28 (2003) 301.Google Scholar
17 Serbin, J. Ovsianikov, A. and Chickov, B. Opt. Expr. 12 (2004) 5221.Google Scholar
18 Ovsianikov, A. Chichkov, B. Adunka, O. Pillsbury, H. Doraiswamy, A. Narayan, R.J. Appl. Surf. Sci. 253 (2007) 6603.Google Scholar
19 Haas, K.H. and Wolter, H. Synthesis properties and applications of inorganic-organic copolymers, Curr. Opin. Solid State Mater. Sci. 4 (1999) 571.Google Scholar
20 Doraiswamy, A. Jin, C. Narayan, R.J. Mageswaran, P. Mente, P. Modi, R. Auyeung, R. Chrisey, D.B. Ovsianikov, A. and Chichkov, B. Acta Biomater. 2 (2006) 267.Google Scholar
21 Ovsianikov, A. Chichkov, B. Mente, P. Monteiro-Riviere, N.A., Doraiswamy, A. and Narayan, R.J. Int. J. Appl. Ceram. Technol. 4 (2007) 22.Google Scholar
22 Meyers, M.A. Lin, A.Y.M. Lin, Y.S. Olevsky, E.A. and Georgalis, S. JOM 60 (2008) 19.Google Scholar
23 Bechert, D.W. Bruse, M. Hage, W. Hoeven, J.G.T. van der, and Hoppe, G. J. Fluid Mech. 338 (1997) 59.Google Scholar
24 Oka, K. Aoyagi, S. Arai, Y. Isono, Y. Hashiguchi, G. and Fujita, H. Sens. Actuators A 97-98 (2002) 478.Google Scholar
25 Aoyagi, S. Izumi, H. and Fakuda, M. MEMS 2007 21-25 (2007) 397.Google Scholar
26 Chakraborty, S. and Tsuchiya, K. J. Appl. Phys. 103 (2008) 114701.Google Scholar
27 Aoyagi, S. Izumi, H. and Fukuda, M. Sens. Actuators A 143 (2008) 20.Google Scholar
28 Kobayashi, K. and Suzuki, H. Sens. Actuators B 80 (2001) 1.Google Scholar
29 Suzuki, H. Tokuda, T. and Kobayashi, K. Sens. Actuators B 83 (2002) 53.Google Scholar
30 Gattiker, G.E. Kaler, K.V.I.S. and Mintchev, M.P. Microsyst. Technol. 12 (2005) 44.Google Scholar
31 Chichkov, B.. SPIE Newsroom, 2007 10.1117/2.1200704.0705.Google Scholar
32 Owen, W.B. J. Morphol. 183 (1985) 51.Google Scholar
33 Snodgrass, R.E. Smithsonian Miscellaneous Collections 139 (1959) publication 4388.Google Scholar
34 Ramasubranamian, M.K. Barham, O.M. and Swaminathan, V. Bioinsp. Biomim. 3 (2008) 046001.Google Scholar
35 Daniel, T.L. and Kingsolver, J.G. J. Theoret. Biol. 105 (1983) 661.Google Scholar