Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:56:52.654Z Has data issue: false hasContentIssue false

Raman studies of suspensions and solutions of singlewall carbon nanotubes

Published online by Cambridge University Press:  01 February 2011

N. Izard
Affiliation:
Groupe de Dynamique des Phases Condensées, UMR CNRS 5581, Université Montpellier 2, Montpellier, France
A. Pénicaud
Affiliation:
Centre de Recherche Paul Pascal, CNRS-Université Bordeaux 1, Pessac, France
E. Anglaret
Affiliation:
Groupe de Dynamique des Phases Condensées, UMR CNRS 5581, Université Montpellier 2, Montpellier, France
Get access

Abstract

Raman spectroscopy is used to probe the structure and electronic properties of nanotubes dispersed in a liquid phase. We show that the radial breathing modes are upshifted in suspensions due to the molecular pressure of the solvent. On the other hand, we directly probe charge transfer in solutions of nanotube polyelectrolytes and its reversibility after oxydation in air.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Chen, J. et al, Science 282, 95 (1998).Google Scholar
[2] Vigolo, B. et al, Science 290, 1331 (2000).Google Scholar
[3] Ramesh, S., Ericson, L.M., Davis, V.A., Saini, R.K., Kittrell, C., Pasquali, M., Billups, W.E., Adams, W.W., Hauge, R.H., Smalley, R.E., J. Phys. Chem. B 108, 8794 (2004).Google Scholar
[4] Pénicaud, A., Poulin, P., Derré, A., Anglaret, E., Petit, P., J. Am. Chem. Soc., in press.Google Scholar
[5] Dresselhaus, M.S., Eklund, P.C., Adv. Phys. 49, 705 (2000).Google Scholar
[6] Sauvajol, J.L., Anglaret, E., Rols, S., Alvarez, L., Carbon 40, 1697 (2002).Google Scholar
[7] O'Connell, M.J., Bachilo, S.M., Huffman, C.B., Moore, V.C., Strano, M.S., Haroz, E.H., Rialon, K.L., Boul, P.J., Noon, W.H., Kittrell, C., Ma, J., Hauge, R.H., Weisman, R.B., Smalley, R.E., Science 297, 593 (2002).Google Scholar
[8] Izard, N., Riehl, D., Anglaret, E., to be published.Google Scholar
[9] Badaire, S., Poulin, P., Maugey, M. and Zakri, C., Langmuir, in press.Google Scholar
[10] Petit, P., Mathis, C., Journet, C., Bernier, P., Chem. Phys. Lett. 305, 370 (1999)Google Scholar
[11] Dresselhaus, M.S., Dresselhaus, G., Jorio, A., Souza Filho, A.G., Saito, R., Carbon 40, 2043 (2002).Google Scholar
[12] Rao, A.M., Chen, J., Richter, E., Schlecht, U., Eklund, P.C., Haddon, R.C., Venkateswaran, U.D., Kwon, Y.K., Tomanek, D., Phys. Rev. Lett. 86, 3895 (2001).Google Scholar
[13] Wood, J.R., Wagner, H.D., Appl. Phys. Lett. 76, 2883 (2000);Google Scholar
Wood, J.R., Zhao, Q., Frogley, M.D., Meurs, E.R., Prins, A.D., Peijs, T., Dunstan, D.J., Wagner, H.D., Phys. Rev. B 62, 7571 (2000).Google Scholar
[14] Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Oshtsuka, Y., Achiba, Y., Synth. Metals 103, 2555 (1999).Google Scholar
[15] Hagen, A. and Hertel, T., Nanoletters 3, 383 (2003).Google Scholar
[16] Venkateswaran, U.D., Rao, A.M., Richter, E., Menon, M., Rinzler, A., Smalley, R.E., Eklund, P.C., Phys. Rev. B 59, 10928 (1999).Google Scholar
[17] Rao, A.M., Eklund, P.C., Bandow, S., Thess, A., Smalley, R.E., Nature 388, 257 (1997).Google Scholar
[18] Bendiab, N., Anglaret, E., Bantignies, J.L., Zahab, A., Sauvajol, J.L., Petit, P., Mathis, C., Lefrant, S., Phys. Rev. B 64, 245424 (2001);Google Scholar
Sauvajol, J.L., Bendiab, N., Anglaret, E., Petit, P., C.R. Physique 4, 1035 (2003).Google Scholar
[19] This is always true for aqueous supensions prepared with the non-ionic surfactant Triton X100. By contrast, we observed signatures of doping in the Raman spectra of aqueous suspensions prepared with SDS, which we assigned to charge transfer between SWNT and SO4 2- species (to be discussed elsewhere).Google Scholar