Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T07:39:40.107Z Has data issue: false hasContentIssue false

Raman Investigation of Fullerene [60] Under hydrostatic Pressure

Published online by Cambridge University Press:  01 February 2011

Mostafa El-Ashry
Affiliation:
Dept. of Mechanical and Materials Engineering, Wright State University, Dayton, OH 45435
Maher Amer
Affiliation:
Dept. of Mechanical and Materials Engineering, Wright State University, Dayton, OH 45435
John F. Maguire
Affiliation:
Air Force Research Laboratory, WPAFB, OH 45433
Get access

Abstract

We report the results of a study of adsorption of small molecules on the surface of buckminsterfullerene, C60. The pressure dependence of the Raman spectrum was investigated over the range 0–10 GPa in methanol-water mixtures that were used as the pressure transmitting fluid (PTF) in a diamond anvil cell. It is found that the spectral shift and its pressure derivative are sensitive to both the applied pressure and to the composition of the PTF. These observations are consistent with an explanation that involves preferential adsorption onto the surface of the C60. In particular, the notion of C60 collapse needs not be invoked to explain the observations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kadish, K. M Ruoff, R. S. Fullerenes chemistry, physics, and technology, Wiley Interscience, New York, 2000.Google Scholar
2. Boal, A. k. Ilhan, F‥ Derouchey, J. E. Albrecht, T. T. Russell, T. P. Rotello, Y. M Nature 404, 746748 2000.Google Scholar
3. Rowlinson, J. S., Faraday Lecture, The Molecular Theory of Small Systems, Chemical Society Reviews, Imperial college, London, 1983.Google Scholar
4. Svishchev, I. M. Zassetsky, M. Yu, A, J Chem. Phys., 113(17), 74327436, 2000.Google Scholar
5 Matos, N. Y. López, G. E. J Chem. Phys. 109(3), 11411146, 1998.Google Scholar
6 Kierlik, E. Rosinberg, M. L. Phys. Rev. A, 44 (8) 50255037, 1991.Google Scholar
7 Kourouklis, G. A., Ves, S., and Meletov, K. P., Physica B, 265, 214222, 1999.Google Scholar
8 Venkateswaran, U. D., Rao, A. M., Richter, E.,. Menon, M,. Rinzler, A, Smalley, R. E.,. Eklund, P. C, Phys. Rev. B, 59(16) 1092810934, 1999.Google Scholar
9 Teredesia, P. V.,. Sood, A. K, Sharma, S. M., Karmakar, S., Sikka, S. K., Govindaraj, A., Rao, C. N. R., Phys. Stat. Sol., 223, 479487, 2001.Google Scholar
10 Wood, J. R., Wagner, H. D., Appl. Phys. Lett. 76(20) 28832885, 2000.Google Scholar
11 Wood, J. R., Frogley, M. D., Meurs, E. R.,. Prins, A. D, Peijs, T., Dunstan, D. J., Wagner, D. H., J. Phys. Chem. B 103 1038810392, 1999.Google Scholar
12 Wood, JR; Zhao, Q; Frogley, MD; Meurs, ER; Prins, AD; Peijs, T; Dunstan, DJ; and Wagner, HD (2000) Phys. Rev. B 62 (11) 75717575, 2000.Google Scholar
13 Sandler, J; Shaffer, MSP; Windle, AH; Halsall, MP; Montes-Moran, MA; Cooper, CA; and Young, RJ, Phys. Rev. B 67 (3) art. No. 035417, 2003.Google Scholar
14 Loa, I, J Raman. Spectrosc. 34, 611627, 2003.Google Scholar