Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T11:16:05.327Z Has data issue: false hasContentIssue false

Raman Characterization of Nitrogen Doped Multiwalled Carbon Nanotubes

Published online by Cambridge University Press:  15 February 2011

S. Webster
Affiliation:
Center for Nanotechnology, Wake Forest University, Winston-Salem, NC
J. Maultzsch
Affiliation:
Institut für Festkörperphysik, Technische Universität Berlin, Germany
C. Thomsen
Affiliation:
Institut für Festkörperphysik, Technische Universität Berlin, Germany
J. Liu
Affiliation:
Center for Nanotechnology, Wake Forest University, Winston-Salem, NC
R. Czerw
Affiliation:
Center for Nanotechnology, Wake Forest University, Winston-Salem, NC
M. Terrones
Affiliation:
Advanced Materials Department, IPICyT, Venustiano Carranza, San Luis Potosi, Mexico.
F. Adar
Affiliation:
Jobin Yvon Horiba, Raman Spectroscopy Group, Edison NJ
C. John
Affiliation:
Jobin Yvon Horiba, Raman Spectroscopy Group, Edison NJ
A. Whitley
Affiliation:
Jobin Yvon Horiba, Raman Spectroscopy Group, Edison NJ
D. L. Carroll
Affiliation:
Center for Nanotechnology, Wake Forest University, Winston-Salem, NC
Get access

Abstract

N-type multi-walled nanotubes were synthesized by nitrogen doping using pyridine and pyridine-melamine mixtures in chemical vapor deposition, and their donor states were verified by Scanning Tunneling Spectroscopy. Tunneling Electron Microscopy reveals small amounts of residual catalyst and Scanning Electron Microscopy show well aligned mats of the Nitrogen doped nanotubes. Nitrogen is present in the lattice of these MWNTs as pyridine structures and CNx structures. Raman scattering measurements were performed as a function of increasing growth temperature and the results compared to previously studied boron doped multiwalled nanotubes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Czerw, R., Terrones, M., Charlier, J.-C., Blase, X., Foley, B., Kamalakaran, R., Grobert, N., Terrones, H., Ajayan, P.M., Blau, W., Tekleab, D., Rühle, M. and Carroll, D. L., Nano. Lett. 1, 457, (2001).Google Scholar
2. Maultzsch, J., Reich, S., Thomsen, C., Webster, S., Czerw, R., Carroll, D. L., Vieira, S. M. C., Birkett, P. R. and Rego, C. A., Appl. Phys. Lett. 81, 2647, (2002).Google Scholar
3. Andrews, R., Jacques, D., Rao, A. M., Derbyshire, F., Qian, D., Fan, X., Dickey, E. C. and Chen, J., Chem. Phys. Lett. 303, 467, (1999).Google Scholar
4. Feenstra, R. M., Phys. Rev. B 50, 4561, (1994).Google Scholar
5. Terrones, M., Terrones, H., Grobert, N., Hsu, W. K., Zhu, Y. Q., Hare, J. P., Kroto, H.W., Walton, D. R. M., Kohler-Redlich, Ph., Rühle, M., Zhang, J. P. and Cheetham, A. K., Appl. Phys. Lett. 75, 3932, (1999).Google Scholar
6. Trasobares, S., Stéphan, O., Colliex, C., Hsu, W. K., Kroto, H. W. and Walton, D. R. M., J. Chem. Phys. 116, 8966, (2002).Google Scholar
7. Thomsen, C. and Reich, S., Phys. Rev. Lett. 85, 5214, (2000).Google Scholar
8. Maultzsch, J., Reich, S. and Thomsen, C., Phys. Rev. B 64, 121407(R), (2001).Google Scholar
9. Maultzsch, J., Reich, S. and Thomsen, C., Phys. Rev. B 65, 233402, (2002).Google Scholar