Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T08:18:18.471Z Has data issue: false hasContentIssue false

Raman and Rayleigh Smart Imaging of Nanophases and Nanosized Materials. Alternatives Techniques to SEM, TEM and AFM ?

Published online by Cambridge University Press:  01 February 2011

Philippe Colomban
Affiliation:
Ladir, UMR 7075 CNRS & Université Pierre & Marie Curie, 2 rue Henry-Dunant, 94320 Thiais, France
Mickaël Havel
Affiliation:
Ladir, UMR 7075 CNRS & Université Pierre & Marie Curie, 2 rue Henry-Dunant, 94320 Thiais, France
Get access

Abstract

The imaging of nanostructural and topological variations on mechanically or chemically aged SiC materials has been performed using non-destructive Raman and Rayleigh μ-spectrometries. The case of a Hi-Nicalonf/(SiC/BN/C)m composite, corroded under alkali and oxidizing environment (modelled using molten NaNO3), is discussed. It is shown for the first time that Rayleigh imaging offers a competitive alternative to AFM measurements for un-prepared, very corrugated surface of materials containing carbon as a second phase. A comparison is made to the analysis of μ-indented areas performed on a polished section of the Ø∼140 μm SCS-6™ Textron SiC fibre. The “smart” Raman images allowed determining the strain distribution within the whole indented area.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Young, R. J., J. Microscopy 185 199 (1996).Google Scholar
2. Colomban, Ph., Spectroscopy Europe 15 8 (2003), http://www.spectroscopyeurope.com.Google Scholar
3. Windeln, J., Bram, C., Eckes, H. L., Hammel, D., Huth, J., Marien, J., Röhl, H., Schug, C., Wahl, M. and Wienss, A., Appl. Surf. Sci. 179 167 (2001).Google Scholar
4. Colomban, Ph. and Havel, M., J. Raman Spectrosc. 33 789 (2002).Google Scholar
5. Colomban, Ph., Gouadec, G. and Mazerolles, L., Materials and Corrosion 53 306 (2002).Google Scholar
6. Gouadec, G. and Colomban, Ph., J. Eur. Ceram. Soc. 21 1249 (2001).Google Scholar
7. Havel, M. and Colomban, Ph., in Proc. of the 105th Annual American Ceramic Society Conference and Exposition, Nashville, April 2003, Advances in Ceramic Matrix Composites IX, Bansal, N.P., Singh, J.P., Kriven, W.M. & Schneider, H. Eds, Ceramics Trans. 153 47 (2003).Google Scholar
8. Levenberg, K., Qu. App. Math. 2 164 (1944).Google Scholar
9. Havel, M., Baron, D., Colomban, Ph., J. Mater. Sci. 39 6183 (2004).Google Scholar
10. Colomban, Ph., Gouadec, G. and Mazerolles, L.. in Proc. of the 103th Annual American Ceramic Society Conference and Exposition, Indianapolis, May 2001, Ceramics Trans. 128 157 (2001).Google Scholar
11. Gouadec, G. and Colomban, Ph., J. Eur. Ceram. Soc. 21 1249 (2001).Google Scholar
12. Olego, D., Cardona, M. and Vogl, P., Phys. Rev. B. 25 3878 (1982).Google Scholar