Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:33:11.354Z Has data issue: false hasContentIssue false

α-Radiolysis and α-Radiation Damage Effects on uo2 Dissolution Under Spent Fuel Storage Conditions

Published online by Cambridge University Press:  10 February 2011

V. V. Rondinella
Affiliation:
European Commission, Joint Research Centre, Institute for Transuranium Elements, Postfach 2340, 76125 Karlsruhe, Germany, [email protected]
Hj. matzke
Affiliation:
European Commission, Joint Research Centre, Institute for Transuranium Elements, Postfach 2340, 76125 Karlsruhe, Germany, [email protected]
J. Cobos
Affiliation:
CIEMAT, Av.da Complutense 22, E-28040 Madrid, Spain
T. Wiss
Affiliation:
European Commission, Joint Research Centre, Institute for Transuranium Elements, Postfach 2340, 76125 Karlsruhe, Germany, [email protected]
Get access

Abstract

α-decay will constitute almost entirely the radiation field in and around spent nuclear fuel after a few hundred years in a geological repository. Pellets of UO 2 containing ˜0.1 and ˜10 wt. % 238Pu were fabricated using a sol-gel method and characterized, comparing their properties to those of undoped UO2. The α-radiation fields of different types of commercial LWR spent fuel are of the same order of magnitude as the fuel with the lower Pu-concentration used in this work. The results of static batch leaching tests at room temperature in demineralized water under anoxic atmosphere showed that the amounts of U released during leaching were higher in the case of UO2 containing 238pu than for undoped UO2. Relatively large amounts of Pu were released after the longest leaching times. Lattice parameter measurements using XRD and hardness measurements by Vickers indentation showed a relatively rapid build-up of α-decay damage in the material stored at ambient temperature with the higher concentration of dopant, while for the material with ˜0.1 wt. % Pu no clear variations were detected during the same time intervals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Allen, A.O., The Radiation Chemistry of Water and Aqueous Solutions, D. Van Nostrand Co. Inc., Princeton, 1961.Google Scholar
2. Allen, A.O., in Actions Chimiques et Biologiques des Radiations, 5ene serie (Academic Press, London, 1961), p. 1.Google Scholar
3. Grambow, B., Werrne, L.O., Forsyth, R.S., and Bruno, J., Mat. Res. Soc. Symp. Proc. 176, 1990, pp. 465474.Google Scholar
4. Gray, W.J., Mat. Res. Soc. Symp. Proc. 84 1987 pp. 141151.Google Scholar
5. Webcr, W.J., Wald, J.W., and McVay, G.L., J. Am. Ceram. Soc. 68 (9), C-253-255 (1985).Google Scholar
6. Christensen, H., Mat. Res. Soc. Symp. Proc. 212, 1991, pp. 213220.Google Scholar
7. Sunder, S., Shoesmith, D.W., Christensen, H., and Miller, N.H., J. Nucl. Mater. 190, 7986 (1992).Google Scholar
8. Christensen, H. and Sunder, S., AECL-1 1479 COG-95-535, 1995.Google Scholar
9. Sunder, S., Nucl. Tech. 122, 211221 (1998).Google Scholar
10. Erikscn, T.E., Eklund, U.-B., Werme, L., and Bruno, J., J. Nucl. Mater. 227, 7682 (1995).Google Scholar
11. Eriksen, T.E., SKB Progress Report U-96-29, 1996.Google Scholar
12. Loida, A., Gramnbow, B., Geckeis, H., and Dressler, P., Mat. Res. Soc. Symp. Proc. 353 (1995), pp. 577584.Google Scholar
13. Christensen, H. and Bjergbakke, E., Mat. Res. Soc. Symp. Proc. 50, 1985, pp. 401408.Google Scholar
14. Shoesmnith, D.W., Sunder, S., Johnson, L.H., and Bailey, M.G., Mat. Res. Soc. Symp. Proc. 50, 1985, pp. 309316.Google Scholar
15. Sunder, S., Shoesmith, D.W., Johnson, L.H., Wallace, G.J., Bailey, M.G., and Snaglewski, A.P., Mat. Res. Soc. Symp. Proc. 84, 1987, pp. 309316.Google Scholar
16. Sunder, S., Shoeslnith, D.W., Christensen, H., Bailey, M.G., and Miller, N.H., Mat. Res. Soc. Syrup. Proc. 127, 1989, pp. 317324.Google Scholar
17. Sunder, S., Shoesmith, D.W., Christensen, H., Miller, N.H., and Bailey, M.G., Mat. Res. Soc. Syrnp. Proc. 176, 1990, pp. 457464.Google Scholar
18. Giménez, J., Baraj, E., Torrero, M.E., Casas, I., Pablo, J. de, J. Nucl. Mater. 238, 6469 (1996).Google Scholar
19. Sunder, S., Shoesmith, D.W., and Miller, N.H., J. Nucl. Mater. 244, 6674 (1997).Google Scholar
20. Shoesmith, D.W. and Sunder, S., J. Nucl. Mater. 190, 2035 (1992).Google Scholar
21. Zicglcr, I.F., Biersack, J.P., and Littmark, U., The Stopping and Range of Ions in Solids, (Pergamon Press, London, 1985).Google Scholar
22. Rondinella, V.V., Serrano, J., Matzke, Hj., and Glatz, J.-P., to be published.Google Scholar
23. Serrano, J., Rondinella, V.V., Glatz, J.-P., Toscano, E. H., Quifiones, J., Diaz-Arocas, P.P., and Garcia-Serrano, J, Radiochimica Acta, 82 (1998) 3337.Google Scholar
24. Weber, W.J., J. Nucl. Mater. 98, 206215 (1981).Google Scholar
25. Matzke, Hj., Radiat. Eff. 64, 333 (1982).Google Scholar
26. Noe, M. and Fuger, J., Inorg. Nucl. Chem. Letters 10, 719 (1974).Google Scholar
27. Matzke, Hi., J. Nucl. Mater. 190, 101106 (1992).Google Scholar
28. Matzke, Hj., J. Nucl. Mater. 208, 18 (1994).Google Scholar
29. Matzke, Hi.,. Ottaviani, I., Pellottiero, D. and Rouault, J., J. Nucl. Mater. 160, 142 (1988).Google Scholar
30. Matzke, Hj., J. Nucl. Mater., in press.Google Scholar
31. Eyal, Y., in Radiation Waste Management and Environmental Remediation, eds. Baker, R., Slate, S. and Benda, G., pp. 303307 (Am. Soc. Mech. Eng., New York, 1997).Google Scholar
32. Forsyth, R.S. and Werme, L.O., J. Nucl. Mater. 190, 319 (1992).Google Scholar